Понятие о сетях эвм, информационных технологиях на сетях. Московский государственный университет печати Что такое сеть эвм

10.1 Характеристики компьютерных сетей
Сеть ЭВМ - комплекс территориально рассредоточенных ЭВМ и терминальных устройств, связанных между собой каналами передачи данных. Сеть можно рассматривать как систему с распределенными по территории аппаратными, программными и информационными ресурсами. Объединение в сеть способствует также повышению надежности функционирования вычислительных средств за счет резервирования технических и программных ресурсов. Сеть позволяет оперативно перераспределять нагрузку между ЭВМ сети и снижать пиковую нагрузку на вычислительные средства. Вычислительные сети создают системы распределенных по обширной территории систем информационного обслуживания (например, резервирование билетов на транспорте).
Компьютерные сети создаются для того, чтобы дать возможность территориально разобщенным пользователям обмениваться информацией между собой, использовать одинаковые программы, общие информационные и аппаратные ресурсы.
По функциональному назначению компьютерные сети можно разделить на:
- информационные (сети научно-технической информации, здравоохранения, резервирования билетов на транспорте и т.д.);
- вычислительные (решение задач с обменом данными и программами между ЭВМ);
- информационно-вычислительные. По размещению информации в сети:
- с централизованным банком данных, к которому имеют доступ многочисленные удаленные абоненты через свои терминалы (абонентские пункты);
- с распределенным банком данных, отдельные информационные базы которого создаются на территориально разнесенных предприятиях.
По территориальной распределенности:
- глобальные сети, охватывающие всю территорию страны, или нескольких стран;
- региональные сети - охватывающие некоторые территориальные регионы (город, область);
- локальные сети - с максимальным расстоянием между узлами сети не более нескольких километров.
По типу ЭВМ, объединенных в сеть:
- однородные сети, содержащие программно-совместимые ЭВМ;
- неоднородные, если ЭВМ в сети программно не совместимы.
Основу вычислительной сети составляют главные ЭВМ (серверы) или вычислительные центры (ВЦ). По числу серверов сети делятся на:
- сети с одним сервером;
- сети с несколькими серверами.

10.2 Структуры соединений ЭВМ. Передачаданных
Сети характеризуются своей структурой соединений (топологией). Топология определяет геометрическое расположение связей между ЭВМ в сети. Она оказывает значительное влияние на пропускную способность сети, ее устойчивость к отказам. Известны следующие структуры соединений: шинная, кольцевая, радиальная, иерархическая и многосвязная. Существуют также структуры, образованные путем комбинации перечисленных структур.
Одинарная многоточечная линия (общая шина) (рис. 10.1) характеризуется общедоступной линией связи. Для нее характерны простота подключения новых ЭВМ, легкость управления, высокая гибкость и возможность простого расширения сети. Одновременно по общей шине могут общаться только две ЭВМ, что является недостатком такой топологии.

В кольцевой структуре сети (рис. 10.2) ЭВМ последовательно соединены друг с другом однонаправленной замкнутой линией связи. Информация, передаваемая в одном направлении по кольцу, регенерируется в каждой ЭВМ (данные передаются как бы по эстафете). Такая структура требует более сложного управления, а включение новой ЭВМ приводит к временному разрыву кольца и прекращению работы в сети.
Радиальная (звездная) структура (рис. 10.3) предполагает наличие центрального компьютера (сервера), с которым связываются остальные ЭВМ (рабочие станции, клиенты). Сервер управляет сетью, определяет маршрут передачи сообщений. По основным характеристикам звездная структура уступает шинной структуре. В частности, ее применение требует повышенных затрат на прокладку линий связи.

Иерархическая (древовидная) структура (рис. 10.4) выглядит в виде дерева, которое растет сверху вниз. Дерево образуется путем соединения нескольких шин с корневой ЭВМ -сервером - через узлы коммутации (УК). Дерево обладает необходимой гибкостью для связи между ЭВМ, находящимися на различных уровнях иерархии.
Отказ одного компьютера приводит к отказу лишь одной ветви, поэтому эта структура более надежна, чем кольцевая.
В полносвязной сети все ЭВМ связаны отдельными линиями связи друг с другом (рис. 10.5). Это наиболее сложная и дорогая структура сети, но она обеспечивает исключительно высокую надежность и скорость передачи данных. Эта топология в сетях применяется редко.
На практике чаще встречаются гибридные сети ЭВМ, приспособленные к конкретным требованиям и сочетающие фрагменты шинной радиальной и других топологий.


Каналы связи. Сети ЭВМ начали создаваться, когда линии связи использовались в технике и быту очень широко. Развитие сетей ЭВМ пошло по линии «вписывания» системы передачи данных между ЭВМ в уже существующие стандарты телеграфной, телефонной и радиосвязи. Для локальных сетей обычно используются выделенные и коммутируемые каналы телефонной сети.
Телефонные и телеграфные каналы связи обладают низкой пропускной способностью и не согласованы с аппаратной частью ЭВМ. Скорость передачи каналов связи оценивается в бодах (1 бод = 1 бит/с). Телеграф имеет пропускную способность 150 бод, телефон - 3000 бод.
По телефонным каналам информация (речь) передается в аналоговой форме, а в вычислительных системах - в дискретной форме, поэтому требуется специальное устройство сопряжения -МОДЕМ (МОдулятор-ДЕМодулятор).Модем представляет собой устройство в составе аппаратуры передачи данных, которое преобразует потоки битов в непрерывные сигналы, пригодные для передачи данных по каналу связи (телефонному, телеграфному, радио, спутниковому, оптическому и т.д.). На приемном конце модем делает обратное преобразование.
Передача данных по аналоговым каналам осуществляется путем модуляции колебаний несущей частоты: амплитудной, частотной, фазовой на передающей стороне и демодуляции (детектирования) на приемном конце. При этом асинхронная передача каждого символа (буквы или цифры) осуществляется с помощью десяти битов (8 бит требуется для передачи символа и два бита служебных - стартовый и конечный). На рисунке 10.6 покачано использование модема для передачи данных между ЭВМ по телефонному каналу.
Скорость работы современных модемов различна. Разработаны промышленные модели, работающие со скоростями 14400 бит/с, 16800 бит/с, 28800 бит/с, 33600 бит/с и 56000 бит/с.
Значительно большую пропускную способность имеют специальные радиоканалы, каналы спутниковой связи и оптические линии связи. Радиорелейная линия Томск - Анжеро-Судженск имеет пропускную способность 150 Мбод. Еще большей пропускной способностью обладает оптический канал, проложенный вдоль транссибирской магистрали от Москвы до Дальнего Востока.
Каждый компьютер в сети должен иметь сетевой адаптер (сетевую карту), программное обеспечение для передачи данных (сетевые программы) и управляться сетевой операционной системой. Компьютеры локальных вычислительных сетей чаще всего соединены между собой проводом или коаксиальным кабелем. Существуют и беспроводные локальные сети с оптическими или радиоволновыми линиями связи.
Для обеспечения передачи данных необходимо предварительно определить последовательность передачи и форматы передаваемой информации, а также порядок и вид получения подтверждений осуществления передачи данных. Такие соглашения по обмену информацией между источником и приемником в сети называют сетевыми протоколами.
Сетевой протокол (или просто протокол) должен предусматривать управление форматом сообщений, формированием контрольной информации, потоком команд, а также действиями, которые должны быть предприняты в случае обнаружения ошибок обмена. Протоколы обеспечивают согласование передачи данных для неоднородных сетей ЭВМ. Существует несколько стандартов протоколов. В настоящее время в качестве стандарта для международных телекоммуникаций предусмотрен TCP/IР протокол. Он поддерживает используемые во всем мире вычислительные средства: ЭВМ общего назначения, мини-ЭВМ, UNIX-машины, персональные компьютеры и т.д.
Для упорядочения процесса управления приемом и передачей данных в сети этот процесс разделен на семь функциональных уровней.

1. Обеспечение электрических и функциональных характеристик между приемником и передатчиком - физический уровень.
2. Управление каналом передачи данных, установление, поддержка и разъединение каналов (соединений), защита от ошибок при передаче данных -канальный уровень, или уровень управления информационным каналом.
3. Маршрутизация, управление потоками данных при передаче пакетов -сетевой уровень.
4. Управление передачей данных (без обработки) - транспортный уровень.
5. Организация и проведение сеансов связи между прикладными процессами(сеансовый уровень).
6. Интерпретация и преобразование передаваемых между процессами данных к виду, удобному для прикладных программ, - уровень представления данных.
7. Выполнение прикладных программ, управление терминалами, администрирование сети (прикладной уровень).
Каждый уровень обслуживает соседний старший уровень. Организация взаимодействия между одинаковыми уровнями различных систем определяется соответствующими соглашениями (протоколами). Поэтому любая ЭВМ в состоянии «понять» информацию, полученную от любой другой ЭВМ.
Передаваемое сообщение, сформированное на верхнем (прикладном) уровне, последовательно поступает на более низкие уровни, затем по физическому каналу, пройдя через коммутационные системы, передается приемнику, где последовательно проходит от более низких уровней к верхним.
В компьютере-источнике подлежащие пересылке данные на каждом уровне обрамляются служебной информацией: заголовком и концевиком, содержащими адреса источника и приемника, а также некоторыми другими данными. Оформленные таким образом данные называют контейнером (пакетом) (рис. 10.7).
Формирование пакетов подобно многократному вкладыванию в конверты с формированием надписей на конвертах.
На приемной стороне, где контейнеры перемещаются с низких уровней на высокие, происходит «вскрытие конвертов» (удаление служебных данных).
Главная задача протоколов - обеспечение достоверной передачи данных даже при недостаточно надежном канале связи. Эта задача решается различными способами:
а) использование кодов с обнаружением и исправлением ошибок. Простейший из таких кодов - контроль по четности, когда каждый байт снабжается девятым разрядом. Этот разряд устанавливается так, чтобы общее число единиц в посылке было четным;
б) обратная передача. Передав блок данных, немедленно передают его назад и сравнивают с предыдущим. Если нет совпадения, то процесс повторяется. Оптимальная длина посылки зависит от пропускной способности канала. Если вероятность ошибки Р=10-4, то оптимальная длина равна 57 бит, а канал используется на 50%;
в) тайм-аут - предельный промежуток времени ожидания получения «квитанции» о правильном приеме переданного сообщения.
Определение пути, по которому будет передано сообщение, осуществляется с помощью специального устройства - маршрутизатора.
Маршрутизатор (Router) - устройство, которое работает с несколькими каналами, направляя в какой-нибудь из них очередной блок данных.
Маршрутизатор выбирает канал по адресу, указанному в заголовке пришедшего сообщения (пакета). Для каждого поступающего пакета маршрутизатор принимает индивидуальное решение о пути следования пакета к сети, в которой находится машина-адресат. Процедура выбора наилучшего пути называется маршрутизацией.
Проблема выбора осложняется тем, что географически самый короткий путь не всегда самый лучший. Часто критерием при выборе маршрута является время передачи данных по этому маршруту. Оно зависит от пропускной способности каналов связи и интенсивности нагрузки (трафика), которая может изменяться с течением времени. Некоторые алгоритмы маршрутизации пытаются приспособиться к изменению нагрузки, в то время как другие принимают решения на основе средних показателей за длительное время. Выбор маршрута может осуществляться и по другим критериям, например, надежности передачи информации.
Между конечными компьютерами может быть несколько десятков маршрутизаторов и множество промежуточных физических сетей различных типов, но программа-клиент будет воспринимать этот конгломерат как единую физическую сеть.
Таким образом, сетевой протокол выполняет функции маршрутизации, выбирая нужный путь для пакетов в паутине физических сетей.
По способу передачи информации вычислительные сети делятся на:
- сети коммутации каналов;
- сети коммутации сообщений;
- сети коммутации пакетов.
Коммутация каналов. В сети устанавливается физическое соединение между двумя ЭВМ. Эта связь устанавливается посылками сообщений для установки связи. После установки связи передается сообщение о готовности передачи от приемного конца к передающему (обратная связь). Затем по установленному соединениями каналу передаются данные. Коммутация каналов приводит к неэкономному использованию каналов, так как занята цепочка каналов. На установку соединения может уйти больше времени, чем
на передачу данных. Кроме того, данные обычно не загружают полностью канал по пропускной способности.
Коммутация сообщений. Физическое соединение устанавливается только между соседними узлами сети (узлами коммутации) и только на время передачи сообщения. Каждое сообщение снабжается заголовком и передается по сети как единое целое. Поступившее в узел сообщение запоминается в его запоминающем устройстве и в подходящий момент, когда освободится соответствующий канал, передается в следующий соседний узел. Сообщение как бы «прыгает» от одного узла к другому, занимая только один канал между соседними узлами.
Коммутация сообщений по сравнению с коммутацией каналов позволяет ценой усложнения аппаратуры узла коммутации уменьшить задержку при передаче данных и повысить общую пропускную способность сети передачи данных. Но, с другой стороны, на время передачи сообщения (а оно может быть очень большим) канал связи становится недоступным для других пользователей. Кроме того, надежность такого соединения невелика: неполадки одного из многочисленных звеньев канала нарушают связь между узлами.
Коммутация пакетов - это развитие метода коммутации сообщений (рис. 10.8). Сообщение делится на части - пакеты фиксированного размера (1,5 Кбайт). Пакеты помечаются заголовком: адреса источника и приемника, номер пакета в сообщении.

Пакеты передаются по сети как независимые сообщения и поступают в узел коммутации, где накапливаются в буферах каналов связи. Затем они передаются в выходной буфер, где скапливаются вперемешку пакеты различных сообщений. Эти пакеты выдаются на широкополосный канал для передачи в соседний узел коммутации. В пункте назначения интерфейсный процессор формирует из пакетов исходное сообщение.
Коммутация пакетов дает возможность одновременной передачи пакетов одного сообщения различными маршрутами, что уменьшает время передачи и увеличивает надежность передачи. Короткий пакет приводит к меньшим ошибкам и тем уменьшает занятость каналов связи.
Коммутация пакетов обеспечивает наименьшую задержку и наибольшую пропускную способность сети передачи данных, особенно для коротких сообщений. Основные принципы коммутации пакетов поддерживаются протоколом TCP/IP.

70.3 Глобальная информационная сеть Интернет
Развитие мировой телекоммуникации привело к созданию сетей общественного пользования, обеспечивающих передачу данных для широкого круга пользователей. Эти средства могут использовать локальные сети ЭВМ для организации корпораций сетей, соединенных имеющимися в мире средствами связи. Тем самым в полном смысле слова реализуется глобальная сеть ЭВМ. Она открыта для пользователей ЭВМ во всем мире и представляет им доступ к накопленным человечеством интеллектуальным ценностям и информации из любых областей человеческой деятельности.
Интернет (Internet) - это всемирная совокупность компьютерных сетей. Она использует принцип передачи пакетов. Используются высокоскоростные средства не только доставки, но и сортировки пакетов. Для управления передачей данных используются протоколы TCP/IP.
ПротоколTCP/IP (Transmission Control Protocol - протокол управления передачей) разбивает исходное сообщение на несколько небольших фрагментов - пакетов. Каждый пакет
снабжается заголовком, который содержит служебную информацию (адреса отправителя и получателя, идентификатор сообщения, номер пакета в сообщении и т.п.). Ответственность за доставку отдельного пакета по заданному адресу несет IP-протокол (Internet Protocol).
TCP-модуль адресата собирает поступающие пакеты и, пользуясь служебной информацией, соединяет отдельные пакеты в целое исходное сообщение. Недостающие или искаженные фрагменты сообщения пересылаются повторно.
Длина одного пакета обычно не превышает 1500 байт, и одно сообщение может быть разбито на несколько сотен пакетов. Таким образом, по каналам связи одновременно следуют, чередуясь друг с другом, тысячи пакетов. При этом общее время передачи равномерно распределяется между всеми пользователями. Чем больше пользователей одновременно работают в Интернете, тем медленнее доставляются сообщения конкретному адресату. Кроме того, случаются и «технические» задержки -перегрузка промежуточных шлюзов и серверов, неполадки в линиях связи.
Адресация в Интернете. Каждая ЭВМ, подключенная к Интернет, имеет собственный уникальный физический адрес (IP-адрес), состоящий из четырех десятичных чисел (каждое может иметь значения от 0 до 255), разделенных точками, например 194.84.93.107. Такая система адресации позволяет получить 2564 = 4,3 миллиарда адресов. При работе в сети машины отыскивают друг друга именно по этим адресам.
Последнее число адреса есть адрес ЭВМ (host computer), остальные числа в адресе описывают узлы (домены) в иерархии сетей. Международная служба адресов NIC (Network Information Center) выдает адреса доменов, а адреса ЭВМ в домене назначает администратор локальной сети, в которую включен компьютер.
Для облегчения адресации в Интернете реализована служба доменных имен (DNS - Domain Name Service). Каждому IP-адресу ставится в соответствие доменное имя - ряд символьных имен, разделенных точкой. Преобразование доменных имен в IP-адреса можно сделать в своем компьютере (для часто используемых имен), но обычно это делается в узлах сети (в серверах).
Типичное доменное имя имеет структуру:
имя_системы.имя_домена.расширение. Например - asu435-ws7.asu.tusur.ru. Здесь: asu435-ws7 - имя системы (компьютера); asu.tusur - имя домена (поддомен asu принадлежит домену tusur);
го - расширение.
Расширение домена отражает тип организации держателя домена:
equ - учебное заведение;
com - коммерческая организация;
org - некоммерческая организация;
gov - правительственные учреждения;
или код государства:
ru - Россия;
ur - Украина; us-США;
uk - Великобритания;
fr -Франция;
jp - Япония.
Имя домена может состоять из двух-четырех слов. Таким образом, доменная система имен использует принцип последовательных уточнений. Домен верхнего уровня располагается в адресе правее (например, название страны), а домен нижнего уровня - левее.
При поиске сервера по его доменному адресу компьютер пользователя обращается к серверам DNS, которые хранят информацию о соответствии символьных (доменных) имен и физических (числовых) адресов. Фактически поиск нужного сервера осуществляется с помощью физических адресов, а перевод доменных адресов в физические адреса осуществляют с помощью специальных серверов.
Основные службы Интернет. Подключение пользователя к Интернету может осуществляться различными способами в зависимости от услуги, которую хочет получить пользователь. Услуги предоставляют различные службы Интернета. Каждая служба (услуга) поддерживается своими прикладными протоколами. Чтобы воспользоваться какой-то из служб Интернета, необходимо иметь на компьютере программу, способную работать с этим протоколом. Такие программы называют клиентскими.
Терминальный режим. Исторически одной из ранних является служба удаленного управления компьютером Telnet. Этот протокол позволяет пользователю одного компьютера подключиться к другому удаленному компьютеру и работать с ним, как на собственном компьютере (включая операции редактирования и удаления). Для подключения каждый пользователь должен ввести свое регистрационное имя и пароль. Эту службу широко использовали для проведения сложных математических расчетов на удаленных вычислительных центрах, оснащенных мощными ЭВМ.
Часто протоколы Telnet применяются для дистанционного управления техническими устройствами (например, промышленными роботами). С помощью этого протокола бухгалтер или банкир, находясь в командировке, может записать или удалить данные на компьютере, находящемся в другом городе.
Электронная почта (E-mail) - наиболее простой и доступный способ работы в Интернете. Она позволяет передавать сообщения другим пользователям, которые имеют доступ в Интернет. Передачей сообщений управляют почтовые серверы -связные программы. Они получают сообщения от отправителей и пересылают их по цепочке к почтовым серверам адресатов, где эти сообщения накапливаются. При установлении соединения между адресатом и его почтовым сервером происходит автоматическая передача поступивших сообщений на компьютер адресата.
Каждому пользователю присваивается свой почтовый адрес. В Интернете используется доменная адресация. Доменное имя образуется по тем же правилам, что и имя компьютера в сети, только вместо имени компьютера стоит регистрационное имя пользователя. Оно имеет следующий формат:имя_пользователя@имя_домена.расширение .
Например, fnp(5),asu.tusur.ru.
Служба телеконференций (Usenet) - распределенный дискуссионный клуб, телеконференции, группы новостей. В отличие от электронной почты, клиент Usenet направляет сообщение не индивидуальному адресату, а группе неизвестных ему абонентов телеконференции. Сообщения, направленные на сервер группы новостей, отправляются с него на все серверы, с которыми он связан, если на них данного сообщения еще нет. Характер распространения каждого отдельного сообщения напоминает лесной пожар. На каждом из серверов сообщение хранится ограниченное время, и все желающие могут с ним ознакомиться.
Вся система телеконференций разбита на тематические группы (наука, искусство, спорт, отдых и т.п.). Все участники конференции имеют равные права при обсуждении того или иного вопроса, поэтому каждый вправе свободно высказываться по обсуждаемому вопросу. По некоторым данным сейчас в Интернете насчитывается свыше 50000 телеконференций. Они охватывают большинство тем, интересующих массы. Многие специалисты регулярно просматривают сообщения телеконференций.
Телеконференция - это как бы «плавающая» доска объявлений. Изменения, сделанные на одном сервере новостей, передаются на все другие серверы. Чтобы обменяться новостями, серверы регулярно связываются между собой.
Служба пересылки файлов дает возможность обмениваться файлами между компьютерами по протоколу FTP (File Transfer Protocol - протокол передачи файлов). FTP-сервер устанавливается на удаленном компьютере для того, чтобы дать пользователю возможность просмотреть файловую систему сервера и скопировать требуемые файлы. Достоинством данного протокола является возможность передачи файлов любого типа - текстов, рисунков, программ. К недостатку его следует отнести необходимость знания местоположения отыскиваемой информации. Здесь выручает программа Archie, которая позволяет сканировать FTP-архивы и найти тот, который устраивает пользователя по составу программного обеспечения и коммуникационным условиям. FTP - один из самых «древних» прикладных протоколов.
Gopher (грызун) - это протокол, который обеспечивает более развитые (по сравнению с FTP) средства поиска и извлечения информации с помощью многоуровневого меню, справочных книг, индексных ссылок и т.п. Этот протокол поддерживается современными программами-навигаторами. Протокол служит для получения текстовой информации (художественных произведений, стихов). Протокол не является прогрессивным, он постепенно будет терять свою распространенность.
Для поиска сразу на нескольких gopher-серверах создана служба VERONICA.
WAIS (Wide Area Information Servers - распределенная информационная система), которая обслуживает поиск информации в сетевых БД и библиотеках. Этот протокол уже стал архаичным, поиск по ключевым словам в настоящее время происходит с помощью новых поисковых систем.
Поисковые машины Open Text Index, Alta Vista, Yahoo, Lycos и другие представляют собой мощные информационно-поисковые системы, размещенные на серверах свободного доступа. Специальные программы непрерывно в автоматическом режиме сканируют информацию сети на основе заданных алгоритмов и проводят индексацию документов. Поисковые машины предоставляют пользователю на основе созданных баз данных доступ к распределенной на узлах сети информации через выполнение поискового запроса в рамках собственного интерфейса.
IRC (Internet Relay Chat) - чрезвычайно популярная служба Интернета. IRC позволяет пользователям общаться друг с другом, подключившись к одному серверу IRC. Беседа ведется в реальном времени путем набора своих реплик на клавиатуре. В отличие от телеконференций, здесь реакция собеседника следует мгновенно, живо. Этот вид услуг порой называют чатом, или «болтушкой». Этот вид услуг пользуется большой популярностью у студентов.
1CQ - интернет-пейджер, который, в отличие от обычного пейджера, позволяет вести не односторонний, а двухсторонний обмен информацией в реальном масштабе времени. ICQ обладает удобной системой поиска партнеров для бесед (с учетом возраста, интересов, профессии, языка, страны проживания и т.д.). Программа автоматически ищет указанных людей и уведомляет о том, что они в настоящий момент времени подключены к сети.
InternetPhone (IP - Интернет-телефония) - быстро развивающийся новый вид услуг, использующий принцип голосовой связи. Речь преобразуется в цифровой файл и передается по сети в виде обычного набора электронных пакетов. С помощью данной услуги возможна передача голоса, видеоизображения, обмен текстовыми сообщениями, совместное использование графического редактора, обмен файлами. Интернет-телефония позволяет создать голосовую почту, которая похожа на обычную электронную почту. Однако полученные сообщения можно прослушать. Естественно, что ЭВМ должна иметь звуковую карту, микрофон, акустическую систему. Для передачи изображения понадобится видеокамера.
Internet-радио - служба, позволяющая прослушивать сотни радиостанций, ведущих вещания в Интернете. Отличительной особенностью этой услуги является возможность выбора радиостанций, вещающих на определенном языке, тематики вещания (например, новости), музыкальных стилей (джаз, рок, классика, церковная и т.д.).
Internet-телевидение - служба, позволяющая вести прием множества телевизионных каналов. Распространение этой услуги пока ограничивается малой пропускной способностью современных каналов связи.

10.4 Всемирная паутина - WWW. Браузеры
Служба World Wide Web (WWW - всемирная широкая паутина) - безусловно, самая популярная служба современного Итернета. Это мощная информационно-поисковая система. Ее нередко отождествляют с самим Интернетом, хотя на самом деле это лишь одна из его многочисленных служб.
WWW - это единое информационное пространство, состоящее из сотен миллионов взаимосвязанных электронных документов, хранящихся на Web-серверах. Отдельные документы,
составляющие пространство Web, называются Web-страницами. Группы тематически объединенных Web-страниц называют Web-узлами или Web-сайтами. Один физический Web-сервер может содержать много Web-узлов.
WWW была предложена в 1989 году Тимом Беренсом-Ли (Лаборатория физики высоких энергий CERN, Женева) для обмена научной информацией.
Моделью WWW является концепция сверхбольшой базы знаний, в которой содержатся разнообразные документы - блоки информации. Эти блоки информации образуют гиперсреду, в которой документы ассоциативно связаны друг с другом. Документы содержат текст, звук, графические изображения.
Если говорить коротко, то WWW - это распределенная по всему миру большая энциклопедия. В основе распределенной базы данных WWW лежит технология гипертекста.
Гипертекст. Обычно текст представляется как длинная линейная последовательность символов, которая читается в одном направлении. Гипертекстовая технология заключается в том, что текст делится на фрагменты (блоки), оформляемые с помощью специальных элементов разметки - тегов. Между фрагментами устанавливаются связи, которые при необходимости позволяют уточнить полученную информацию. Выбирая связи по ассоциации (по смыслу), можно читать гипертекст в порядке, наиболее удобном для пользователя, а не подряд.
Существуют специальные теги для внедрения графических и мультимедийных объектов (звук, музыка, видеоклипы). Встретив такой тег, обозреватель делает запрос к серверу на доставку файла, связанного с тегом, и воспроизводит его - мы видим иллюстрацию или слышим звук.
Использование гипертекста позволяет фиксировать отдельные мысли, факты, а затем связывать их друг с другом, двигаясь в любых направлениях, определяемых ассоциативными связями. В результате образуется сложный граф взаимосвязанных фрагментов - нелинейный текст. Он отличается от обычного линейного текста, где слова и мысли имеют последовательную структуру.
Создается гипертекст в три этапа: сбор идей и мыслей, планирование связей между ними и реализация ветвящейся структуры гипертекста. Созданный гипертекст может служить элементом охватывающего гипертекста, тем самым обеспечивается основа для создания базы знаний.
Для создания гипертекстовых документов используется высокоуровневый язык HTML - Hyper Text Markup Language (язык разметки гипертекста), близкий к языкам программирования. С помощью тегов HTML в любой документ можно встроить ссылки на другие документы. Таким образом, Web-документ представляет собой обычный текстовый документ, размеченный тегами HTML.
В последние годы в Web-документах находят широкое применение активные компоненты. Это объекты, которые могут не просто отображаться на компьютере, но и выполнять заложенную в них программу. Для создания таких программ используется язык Java.
От обычных текстовых документов Web-страницы отличаются тем, что они оформлены без привязки к конкретному носителю. Электронные Web-документы предназначены для просмотра на экране компьютера, причем заранее неизвестно, какого. Поэтому Web-документы не могут иметь «жесткого» форматирования. Оформление выполняется непосредственно во время их воспроизведения на ЭВМ клиента, и происходит оно в соответствии с настройками программы, выполняющей просмотр.
Браузеры. Для работы с WWW используются специальные программы-клиенты, которые по-английски называются browsers (от глагола «browse» - «просматривать»), а по-русски - браузерами, навигаторами, обозревателями, просмотрщиками. Браузеры позволяют получать по сети различные документы, просматривать и редактировать их содержимое и при необходимости сохранять их на магнитных дисках. Наиболее популярны в настоящий момент времени браузеры NetscapeNavigator и MicrosoftInternetExplorer.
Доступ к ресурсам Интернета производится в браузерах черезунифицированный указатель ресурсов (URL - Uniform Resource Locator). URL определяет адрес сервера и путь к документу на сервере и состоит из трех элементов: протокола передачи, DNS-имени сервера и пути в каталогах, например:
http://www.citforum.tsu.r u/operating-systems/ois/glava 5.html .
Здесь
http - протокол связи; :// - разделитель;
www.citforum.tsu.ru - DNS адрес сервера (см. 10.3); operating-systems/ois/glava_5.html - путевое имя Web-страницы.
Если путевое имя каталога не содержит имени конкретного файла Web-страницы, в этом каталоге ищется имя файла-содержания index.html. Когда путевое имя опущено, соединение будет с начальной страницей index.html в каталоге верхнего уровня.
Большинство браузеров поддерживает ряд протоколов, используемых в Интернете:
http - доступ к Web-узлу;
ftp - протокол пересылки файлов;
file - работа с локальными гипертекстовыми файлами;
gopher - поиск файлов;
news - чтение телеконференций Usenet и другие.
Браузер принимает документ, находит в нем теги и показывает документ на экране так, как они того требуют. Например, там, где в тексте вставлена картинка, браузер прочитает адрес, в котором хранится ее файл, обратится по указанному адресу (в любом месте земного шара), загрузит эту картинку, встроит ее в текст и покажет на экране вместе с текстом.
Совокупность огромного числа гипертекстовых электронных документов, хранящихся на серверах WWW, образуют своеобразное гиперпространство документов, между которыми возможно перемещение. Гипертекстовая связь между сотнями миллионов, хранящихся на физических серверах Интернета, является основой существования логического пространства World Wide Web.
На рисунке 10.9 показано окно браузера Microsoft Internet Explorer, на котором выведена главная страница Томского государственного университета систем управления и радиоэлектроники.
Под строкой заголовка находится главное меню программы, обеспечивающее доступ к широкому набору функций, управления обозревателем. Ниже расположены пиктограммы наиболее часто используемых функций главного меню. В строке «Адрес» вводится URL-адрес нужной страницы.
Главная страница сайта университета представляет собой графическое меню. Нужная страница сайта выбирается щелчком мыши на строке заголовка или графической пиктограммы. Если пункт меню активен при наведении на него указателя мыши, форма указателя меняется со стрелки на кисть руки с указательным пальцем, а в строке состояния программы (внизу окна) появляется адрес станицы, которая выбирается в этом пункте меню.

Коммуникационная сеть - это система, состоящая из объектов (пунктов или узлов сети) и линий передачи (связей, коммуникаций, соединений). Пункты осуществляют функции генерации, преобразования, хранения и потребления продукта, а связи - передачу продукта между пунктами. В качестве продукта могут фигурировать информация, энергия, масса. Сети в этих случаях называются информационные, энергетические, вещественные.

Отличительная особенность коммуникационной сети - большие расстояния между пунктами по сравнению с геометрическими размерами участков пространства, занимаемых пунктами. В группах сетей возможно разделение на подгруппы. Так, среди вещественных сетей могут быть выделены сети транспортные, водопроводные, производственные и др. При функциональном проектировании сетей решаются задачи синтеза топологии, распределения продукта по узлам сети, а при конструкторском проектировании выполняются размещение пунктов в пространстве и проведение (трассировка) соединений.

Информационная сеть - коммуникационная сеть, в которой в качестве продукта выступает информация.

Вычислительная сеть (ВС) - информационная сеть, в состав которой входят ЭВМ и периферийные устройства, являющиеся источниками и приемниками данных, передаваемых по сети. Эти компоненты составляют оконечное оборудование данных (ООД или DTE - Data Terminal Equipment). В качестве ООД могут выступать ЭВМ и другое вычислительное, измерительное и исполнительное оборудование автоматических и автоматизированных систем. Собственно пересылка данных происходит с помощью сред и средств, объединяемых под названием среда передачи данных.

Подготовка данных, передаваемых или получаемых ООД от среды передачи данных, осуществляется функциональным блоком, называемым аппаратурой окончания канала данных (АКД или DCE - Data Circuit-Terminating Equipment). АКД может быть конструктивно отдельным или встроенным в ООД блоком. ООД и АКД вместе представляют собой станцию данных, которую часто называют узлом сети. Примером АКД может служить модем.

На основе вычислительных сетей могут строиться автоматизированные системы (АС) - совокупность управляемого объекта и автоматических управляющих устройств, в которых часть функций управления выполняет человек-оператор; комплекс технических, программных, других средств и персонала, предназначенный для автоматизации различных процессов. В отличие от автоматической системы АС не может функционировать без участия человека.

Вычислительная система - совокупность ЭВМ и средств программного обеспечения, предназначенная для выполнения вычислительных процессов, а также любая автоматизированная система, основанная на использовании ЭВМ.

Системы обработки данных (СОД) - комплекс технических и программных средств, предназначенных для автоматизации и централизации обработки данных.

Системы обработки данных классифицируются на две группы: сосредоточенные и распределенные.

К сосредоточенным СОД относят отдельные ЭВМ, вычислительные комплексы и вычислительные системы; к распределенным - системы телеобработки, вычислительные сети и системы передачи данных (СПД).

Использование вычислительных сетей позволяет получить следующие результаты:

  1. Сокращение затрат на поиск информации.
  2. Доступ к общему программному обеспечению.
  3. Получение значительных вычислительных мощностей (доступ к специальным процессорам, объединение вычислительных мощностей, входящих в сеть, и т.д.).
  4. Доступ к памяти большой емкости, новые информационные технологии (сервис-интернет, дистанционное образование, банковские системы и т.д.).

Конечной целью создания любой вычислительной сети или системы передачи данных является интегральное обслуживание пользователей.

Существует основные критерии оценки ВС и СПД:

  • производительность и пропускная способность;
  • стоимость оборудования и монтажа;
  • технологичность обслуживания;
  • надежность и достоверность передачи информации;
  • информационные возможности.

Централизация - процесс объединения различных данных в рамках вычислительной сети. Децентрализация - обратный процесс, когда данные распределяются по различным компьютерам сети.

Децентрализованная система - многопроцессорная система или вычислительная сеть, в которой управление распределено по различным ее узлам.

Распределенная система, или система с распределенными функциями, - автоматизированная система, в которой отдельные функции и операции реализуются ее распределенными в пространстве технологическими узлами или подсистемами, в том числе и автономными; любая вычислительная система, позволяющая организовать взаимодействие вне независимых, но связанных между собой машин.

Исторически заинтересованность компаний в централизованной обработке данных началась с мэйнфреймов. Мэйнфрейм (от англ. mainframe ) - большая универсальная ЭВМ, высокопроизводительный компьютер со значительным объемом оперативной и внешней памяти, предназначенный для организации централизованных хранилищ данных большой емкости и выполнения интенсивных вычислительных работ. Если у компании не было собственных мэйнфреймов, она могла «арендовать» избыточные мощности у кого-то другого.

К 1970-м годам удаленная компьютерная обработка данных позволила начать использовать компьютерные технологии как средним, так и малым предприятиям. Это был период централизации данных и их обработки. С течением времени технологии совершенствовались и цены на ЭВМ снижались. К концу 1980-х компьютеры уменьшились настолько, что их можно стало содержать внутри обычных помещений. Пошел обратный процесс в сторону децентрализации. Централизованные системы сменились рабочими станциями, и все чаще стали использоваться термины «клиент-сервер» и «распределенные данные ».

К середине 1990-х годов всевозможные бизнес-приложения, начиная с простых бухгалтерских пакетов и заканчивая полномасштабными корпоративными решениями для управления ресурсами, стали непременными атрибутами практически для всех предприятий. Обработка данных распространилась повсеместно, как и сами данные. А затем появился Интернет, который стал использоваться как бизнес-инструмент.

Возможность мгновенно перемещать информацию в любую точку мира позволила свести практически к нулю временные и пространственные преграды, стоящие на пути распространения данных. Исчезла необходимость хранить данные в том месте, где они непосредственно добываются и используются. Более того, оказалось, что гораздо легче поддерживать точность и свежесть информации, когда она сосредоточена в одном месте. Таким образом, процессы централизации вернулись, однако вернулись на новом витке. Теперь централизация ведет к повышению информационной, а не вычислительной производительности.

Перечислим факторы, стимулирующие развитие распределенной обработки данных:

  1. Снижение стоимости процессоров и вычислительных машин.
  2. Тенденции к централизации ПО.
  3. Повышение квалификации пользователя.
  4. Необходимость повышения надежности обработки и хранения информации.
  5. Творчество пользователя.
  6. Высокая стоимость использования вычислительных каналов.
  7. Более удобный диалог пользователя системы.
  8. Проблема взаимодействия систем.
  9. Удаленный доступ к базам данных.
  10. Доступ к сетевому программному обеспечению.
  11. Фактор секретности хранения информации (в распределенной системе легче обеспечить секретность в отличие от централизованных систем).
  12. Перегрузка центральных процессоров.
  13. Дефицит кадровых программистов.

Интегрированная вычислительная сеть (интерсеть) представляет собой взаимосвязанную совокупность многих вычислительных сетей, которые в интерсети называются подсетями.

В автоматизированных системах крупных предприятий подсети включают вычислительные средства отдельных проектных подразделений. Интерсети нужны для объединения таких подсетей, а также для объединения технических средств автоматизированных систем проектирования и производства в систему комплексной автоматизации (CIM - Computer Integrated Manufacturing). Обычно интерсети приспособлены для различных видов связи: телефонии, электронной почты, передачи видеоинформации, цифровых данных и т.п., ив этом случае они называются сетями интегрального обслуживания.

Развитие интерсетей заключается в разработке средств сопряжения разнородных подсетей и стандартов для построения подсетей, изначально приспособленных к сопряжению. Подсети в интерсетях объединяются в соответствии с выбранной топологией с помощью блоков взаимодействия.

В зависимости от расстояний между связываемыми узлами сети разделяются на территориальные и корпоративные.

Территориальные - сети, охватывающие значительное географическое пространство. Среди них можно выделить сети региональные и глобальные, имеющие соответственно региональные или глобальные масштабы; региональные сети иногда называют сетями MAN (Metropolitan Area Network), а общее англоязычное название для территориальных сетей - WAN (Wide Area Network):

  • WAN (Wide Area Network) - глобальная сеть, покрывающая большие географические регионы, включающая как локальные сети, так и прочие телекоммуникационные сети и устройства. Пример WAN - сети с коммутацией пакетов (Frame Relay), через которую могут «разговаривать» между собой различные компьютерные сети.
  • LAN (Local Aiea Network) - локальные сети, имеющие замкнутую инфраструктуру до выхода на поставщиков услуг. Термин «LAN» может описывать и маленькую офисную сеть, и сеть уровня большого завода, занимающего несколько сотен гектаров (до 10 км в радиусе).

Корпоративные (масштаба предприятия) - совокупность связанных между собой ЛВС (локально-вычислительных сетей), охватывающих территорию, на которой размещено одно предприятие или учреждение в одном или нескольких близко расположенных зданиях.

Локальные и корпоративные вычислительные сети - основной вид вычислительных сетей, используемых в системах автоматизированного проектирования (САПР).

Особо выделяют единственную в своем роде глобальную (GAN) сеть Интернет (реализованная в ней информационная служба World Wide Web (WWW) переводится на русский язык как всемирная паутина). В Интернете существует понятие интрасетей (Intranet) - корпоративных сетей.

Локальные сети являются сетями закрытого типа, доступ к ним разрешен только ограниченному кругу пользователей, для которых работа в такой сети непосредственно связана с их профессиональной деятельностью. Глобальные сети являются открытыми и ориентированы на обслуживание любых пользователей. В этих системах существует возможность функционального расширения и изменения системы без изменения ее остальной части.

По принадлежности различают ведомственные и государственные сети.

Ведомственные сети принадлежат одной организации и располагаются на ее территории. Государственные - сети, используемые в государственных структурах.

По скорости передачи информации компьютерные сети делятся на:

  • низкоскоростные (до 10 Мбит/с);
  • среднескоростные (до 100 Мбит/с);
  • высокоскоростные (свыше 100 Мбит/с).

Для определения скорости передачи данных в сети широко используется единица бод (baud), измеряемая числом дискретных переходов или событий в секунду. Если каждое событие представляет собой 1 бит, бод эквивалентен 1 бит/с (в реальных коммуникациях это зачастую не выполняется).

По типу среды передачи сети разделяются на:

  • проводные: коаксиальные, на витой паре, оптоволоконные;
  • беспроводные: с передачей информации по радиоканалам, в инфракрасном диапазоне.

В зависимости от способа управления различают сети:

  • клиент-сервер - в них выделяется один или несколько узлов (серверов), выполняющих в сети управляющие или специальные обслуживающие функции, а остальные узлы (клиенты) являются терминальными, в них работают пользователи. Сети клиент-сервер различаются по характеру распределения функций между серверами, другими словами, по типам серверов (например, файл-серверы, серверы баз данных). При специализации серверов по определенным приложениям имеем сеть распределенных вычислений. Такие сети отличают также от централизованных систем, построенных на мэйнфреймах;
  • одноранговые - в них все узлы равноправны; поскольку в общем случае под клиентом понимается объект (устройство или программа), запрашивающий некоторые услуги, а под сервером - объект, предоставляющий эти услуги, то каждый узел в одноранговых сетях может выполнять функции и клиента, и сервера.

Существует так называемая «сетецентрическая концепция», в соответствии с которой пользователь может лишь приобрести дешевое оборудование для обращения к удаленным компьютерам, а сеть обслуживает заказы на выполнение вычислений и получение информации. То есть пользователю не нужно приобретать программное обеспечение для решения прикладных задач, ему нужно лишь платить за выполненные заказы. Подобные компьютеры называют тонкими клиентами или сетевыми компьютерами.

По типам используемых компьютеров и устройств различают сети однородные и неоднородные.

Однородные (гомогенные) сети характеризуются тем, что в ВС связываются однотипные ЭВМ и устройства, как правило, разработанные одной фирмой, имеющие одинаковые операционные системы и однотипный состав абонентских средств. В однородных сетях значительно проще выполнять многие распределенные информационные процедуры (в качестве примера можно назвать организацию и использование распределенных баз данных).

Неоднородные (гетерогенные) сети характеризуются тем, что в ВС присутствуют средства и устройства, разработанные разными фирмами, но заложенные в них правила позволяют им бесконфликтно взаимодействовать и функционировать. В крупных автоматизированных системах, как правило, сети оказываются неоднородными.

В зависимости от прав собственности на сети последние могут быть сетями общего пользования (public) или частными (private). Среди сетей общего пользования выделяют телефонные сети общего пользования (ТФОП, PSTN - Public Switched Telephone Network) и сети передачи данных (PSDN - Public Switched Data Network).

Сети также различают в зависимости от используемых в них протоколов и по способам коммутации.

Вычислительные сети делятся на два больших класса: одноранговые сети (Peer-to-Рееr Network) и клиент-серверные сети (иерархические, Client-Server Network).

В зависимости от того, как распределены функции между компьютерами сети, они могут выступать в трех разных ролях:

  1. Компьютер, занимающийся исключительно обслуживанием запросов других компьютеров, играет роль выделенного сервера сети.
  2. Компьютер, обращающийся с запросами к ресурсам другой машины, играет роль узла-клиента.
  3. Компьютер, совмещающий функции клиента и сервера, является одноранговым узлом. Сеть не может состоять только из клиентских или только из серверных узлов.

В соответствии с указанными ролями сеть может быть построена по одной из трех схем:

  • сеть на основе одноранговых узлов - одноранговая сеть;
  • сеть на основе клиентов и серверов - сеть с выделенными серверами;
  • сеть, включающая узлы всех типов, - гибридная сеть.

Каждая из этих схем имеет свои достоинства и недостатки, определяющие их области применения.

Одноранговые сети. В таких сетях все компьютеры равны в возможностях доступа к ресурсам друг друга. Это сети равноправных компьютеров, каждый их которых имеет уникальное имя (имя компьютера) и обычно пароль для входа в него во время загрузки операционной системы (ОС). Каждый компьютер может одновременно являться и сервером и клиентом сети, хотя вполне допустимо назначение одного компьютера только сервером, а другого только клиентом. Каждый пользователь может объявить какой-либо ресурс своего компьютера разделяемым, после чего другие пользователи могут с ним работать. В одноранговых сетях на всех компьютерах устанавливается такая операционная система, которая предоставляет всем компьютерам в сети потенциально равные возможности. Например, каждый компьютер может предоставить доступ к файлам, размещенным на его дисках, и подключенным к нему принтерам.

При потенциальном равноправии всех компьютеров в одноранговой сети часто возникает функциональная несимметричность. Обычно некоторые пользователи не желают предоставлять свои ресурсы для совместного доступа. В таком случае серверные возможности их операционных систем не активизируются, и компьютеры играют роль «чистых» клиентов.

В то же время администратор может закрепить за некоторыми компьютерами сети только функции, связанные с обслуживанием

запросов от остальных компьютеров, превратив их таким образом в «чистые» серверы, за которыми пользователи не работают. В такой конфигурации одноранговые сети становятся похожими на сети с выделенными серверами, но это только внешнее сходство - между двумя типами сетей остается существенное различие. Изначально в одноранговых сетях отсутствует специализация ОС в зависимости от того, какую роль играет компьютер - клиента или сервера. Изменение роли компьютера в одноранговой сети достигается за счет того, что функции серверной или клиентской части не используются.

Одноранговые сетевые ОС способны предоставлять большинство тех же сервисов и ресурсов, что и клиент-с ер верные сетевые ОС. Они также характеризуются простотой установки и относительной дешевизной.

Достоинством одноранговых сетей является их высокая гибкость: в зависимости от конкретной задачи сеть может использоваться очень активно либо совсем не использоваться. Из-за большой самостоятельности компьютеров в таких сетях редко возникают перегрузки (к тому же количество компьютеров обычно невелико, не больше 10). Установка одноранговых сетей довольно проста. Кроме того, не требуются дополнительные дорогостоящие серверы, . Пользователи сами могут управлять своими ресурсами. В одноранговых сетях допускается определение различных прав пользователей по доступу к сетевым ресурсам, но система разграничения прав развита слишком слабо. Если каждый ресурс защищен своим паролем, то пользователю приходится запоминать большое число паролей.

Однако такие сети менее надежны и эффективны, чем полноценные клиент-серверные сети. Более того, производительность одноранговых сетей значительно снижается при увеличении размеров сети и количества участвующих в сетевых взаимодействиях компьютеров. Эксплуатация и поддержка таких сетей часто являются непростыми задачами. Из-за отсутствия централизованного управления администраторы вынуждены управлять множеством сервисов на каждой машине отдельно, обеспечивая корректность одновременного функционирования пользовательских приложений и серверных компонентов. Такая работа усложняется еще и тем, что пользователи, работающие на каждом из компьютеров, имеют возможность самостоятельно изменять настройки ОС, что нередко приводит к неработоспособности всего программного обеспечения этой машины.

К недостаткам одноранговых сетей относятся слабая система контроля и протоколирования работы сети, трудности с резервным копированием информации. Эффективная скорость передачи информации по одноранговой сети часто оказывается недостаточной, поскольку трудно обеспечить быстродействие процессоров, большой объем операций памяти и высокие скорости обмена с жестким диском для всех компьютеров сети. К тому же компьютеры работают не только на сеть, но и решают другие задачи.

Считается, что одноранговая сеть наиболее эффективна в небольших сетях, в которых количество компьютеров не превышает 10-20 единиц. В этом случае нет необходимости в применении централизованных средств администрирования - нескольким пользователям нетрудно договориться между собой о перечне разделяемых ресурсов и паролях доступа к ним. При увеличении количества компьютеров сетевые операции замедляют работу и создают множество других проблем. Тем не менее для небольшого офиса одноранговая сеть - это оптимальное решение. Самая распространенная в настоящий момент одноранговая сеть - сеть на основе Windows XP или более ранних версий ОС Windows.

В больших сетях необходимы средства централизованного администрирования, хранения и обработки данных, а особенно защиты данных. Такие возможности легче обеспечить в сетях с выделенными серверами.

Клиент-серверные сети применяются в тех случаях, когда в сеть должно быть объединено много компьютеров (более 20), которые постоянно используют множество пользователей, и возможностей одноранговых сетей уже не хватает. Тогда в сеть включают специализированный компьютер (или компьютеры) - выделенный сервер . Это абонент сети, который предоставляет свои ресурсы другим абонентам, но сам не использует ресурсы других абонентов, т.е. служит только сети. Клиентом сети называется абонент сети, который использует ресурсы, но сам свои ресурсы в сеть не отдает, т.е. сеть его обслуживает. Компьютер-клиент часто называют рабочей станцией .

В сетях с выделенными серверами используются специальные варианты сетевых ОС, которые оптимизированы для работы в роли серверов и называются серверными ОС. Пользовательские компьютеры в таких сетях работают под управлением клиентских ОС. Серверные компьютеры предоставляют свои ресурсы клиентским рабочим станциям.

Сетевая ОС, работающая на сервере (серверная ОС), отвечает за координацию всех действий, связанных с использованием всех ресурсов и сервисов этого сервера. Клиентом в такой сети является любое сетевое устройство, формирующее запросы к серверу для использования его ресурсов и сервисов (например, рабочие станции пользователей). Для обеспечения взаимодействия клиента и сервера на клиенте устанавливается и функционирует клиентское программное обеспечение, поддерживающее общий протокол взаимодействия клиента и сервера.

В таких сетях пользователи обычно регистрируются в сети со своей рабочей станции. Для регистрации пользователь сообщает серверу свое имя и пароль. Если сообщенные пользователем имя и пароль корректны, то сервер аутентифицирует пользователя и предоставляет доступ ко всем ресурсам и сервисам, на которые пользователю были даны права. В соответствии с назначенными пользователю правами серверная ОС предоставляет приложениям пользователя необходимые для их работы ресурсы и сервисы.

Серверная ОС управляет множеством аппаратных ресурсов сервера, например дисками, оперативной памятью, принтерами, модемами. Файловая система сервера тоже является примером серверного ресурса.

В дополнение к перечисленному серверная ОС предоставляет множество сервисов, включая координацию доступа и совместного использования файлов (в том числе механизмов блокировки файлов и записей) и принтеров, управление памятью сервера, обеспечение безопасности данных и предоставление возможностей сетевого взаимодействия.

Выполнение этих задач специально разработанной серверной ОС гарантирует надежность и безопасность любых данных, хранящихся и обрабатывающихся на сервере.

Специализация операционной системы для работы в роли сервера является естественным способом повышения эффективности серверных операций. А необходимость такого повышения часто ощущается весьма остро, особенно в большой сети. При существовании в сети сотен или даже тысяч пользователей интенсивность запросов к разделяемым ресурсам может быть очень значительной, и сервер должен справляться с этим потоком запросов без больших задержек. Очевидным решением проблемы является использование в качестве сервера компьютера с мощной аппаратной платформой и операционной системой, оптимизированной для серверных функций.

Чем меньше функций выполняет ОС, тем более эффективно можно их реализовать, поэтому для оптимизации серверных операций разработчики ОС вынуждены ограничивать некоторые другие ее функции, причем иногда даже полностью отказываться от них. Существует несколько принципиальных особенностей серверных ОС:

  • поддержка мощных аппаратных платформ, в том числе мультипроцессорных;
  • поддержка большого числа одновременно выполняемых процессов и сетевых соединений;
  • включение в состав ОС компонентов централизованного администрирования сети (например, справочной службы или службы аутентификации и авторизации пользователей сети);
  • более широкий набор сетевых служб.

Клиентские операционные системы в сетях с выделенными серверами обычно освобождаются от серверных функций, что значительно упрощает их организацию. Разработчики клиентских ОС уделяют основное внимание пользовательскому интерфейсу и клиентским частям сетевых служб. Наиболее простые клиентские ОС поддерживают только базовые сетевые службы, обычно файловую и службу печати. В то же время существуют так называемые универсальные клиенты, которые поддерживают широкий набор клиентских частей, позволяющих им работать практически со всеми серверами сети.

Большинство сетевых ОС выпускаются в двух версиях. Одна версия предназначена для работы в качестве серверной ОС, а другая - для работы на клиентской машине. Эти версии чаще всего основаны на одном и том же базовом коде, но отличаются набором служб и утилит, а также параметрами конфигурации, в том числе устанавливаемыми по умолчанию и не поддающимися изменению.

Например, операционная система Windows 2000 выпускалась в версии для рабочей станции - Windows 2000 Workstation, а в версии для выделенного сервера - Windows 2000 Server. Оба варианта операционной системы включают клиентские и серверные части многих сетевых служб.

Так, ОС Windows 2000 Workstation, кроме выполнения функций сетевого клиента, может предоставлять сетевым пользователям файловый сервис, сервисы печати, удаленного доступа и другие, а следовательно, может служить основой для одноранговой сети. С другой стороны, ОС Windows 2000 Server содержит все необходимые средства, которые позволяют задействовать компьютер в качестве клиентской рабочей станции. Под управлением ОС Windows 2000 Server локально запускаются прикладные программы, которые могут потребовать выполнения клиентских функций ОС при появлении запросов к ресурсам других компьютеров сети.

Windows 2000 Server имеет такой же развитый графический интерфейс, как и Windows 2000 Workstation, что позволяет с равным успехом применять эти ОС для интерактивной работы пользователя или администратора. Однако версия Windows 2000 Server имеет больше возможностей для предоставления ресурсов своего компьютера другим пользователям сети, так как может выполнять более широкий набор функций, поддерживает большее количество одновременных соединений с клиентами, реализует централизованное управление сетью, имеет более развитые средства защиты. Поэтому рекомендуется применять Windows 2000 Server в качестве ОС для выделенных серверов, а не клиентских компьютеров.

Наиболее популярные серверные ОС:

Windows NT/2000/2003/2008 Server - решение компании Microsoft;

Unix Solaris, MP-UX, ATX, FreeBSD;

Novell NetWare 5.1/6.0/6.5.

Серверы специально оптимизированы для быстрой обработки сетевых запросов на разделяемые ресурсы, а также для управления защитой файлов и каталогов. Однако при больших размерах сети мощности одного сервера может оказаться недостаточно, и тогда в сеть включают несколько серверов.

Серверы могут выполнять и некоторые другие задачи:

  • сетевая печать;
  • выход в глобальную сеть;
  • связь с другой локальной сетью;
  • обслуживание электронной почты и т.п.

Количество пользователей сети на основе серверов может достигать нескольких тысяч. Одноранговой сетью такого размера управлять просто было бы невозможно (каждый пользователь должен быть администратором).

Кроме того, в сети на основе сервера можно легко менять количество подключаемых компьютеров. Такие сети называются масштабируемыми.

Под сервером и клиентом часто понимают не сами компьютеры, а работающие на них приложения. В этом случае приложение, которое отдает ресурсы в сеть, является сервером, а приложение, которое только пользуется сетевыми ресурсами, называется клиентом.

Достоинством сети на основе сервера часто называют надежность. Это верно, но только с одной оговоркой: если сервер действительно точно надежен. В противном случае любой отказ сервера приводит к полному параличу сети, в отличие от одноранговой сети, где отказ одного из компьютеров не приводит к отказу всей сети. Бесспорное достоинство сети с сервером - высокая скорость обмена, так как сервер всегда оснащается быстрым процессором (или даже несколькими), ОЗУ большого объема и быстрыми жесткими дисками.

Так как все ресурсы сети с серверами собраны в одном месте, возможно применение гораздо более мощных средств управления доступом, зашиты данных, протоколирования обмена, чем в одноранговых сетях. Для обеспечения надежной работы сети при аварии электропитания применяется бесперебойное электропитание сервера. В данном случае это гораздо проще, чем в одноранговой сети, где желательно оснащать источником бесперебойного питания все компьютеры сети.

К недостаткам сети на основе сервера относятся зависимость всех компьютеров-клиентов от работы сервера, а также более высокая стоимость вследствие дорогого сервера для администрирования сети (т.е. для управления распределением ресурсов контроля прав доступа и защиты данных файловой системы резервирования файлов).

В сети на основе серверов обязательно наличие специального человека-администратора сети, имеющего соответствующую квалификацию. С другой стороны, централизованное администрирование облегчает обслуживание сети и позволяет оперативно решать все вопросы. Особенно это важно для надежной защиты данных от несанкционированного доступа. В одноранговой сети можно обойтись и без администратора, но при этом все пользователи сети должны иметь хоть какое-то представление об администрировании.

  • иерархическая
  • полуиерархическая
  • серверная
  • 4. Сеть, в которой допустимо назначение одного компьютера только сервером, а другого только клиентом: ...

    1. одноранговая
    2. одноуровневая
    3. клиент-сервер
    4. иерархическая
    5. полуиерархическая
    6. серверная

    5. Достоинства одноранговых сетей: ...

    1. простота установки
    2. отсутствие дорогостоящих серверов
    3. нет необходимости в системном администрировании
    4. пользователи могут сами управлять своими ресурсами
    5. высокая надежность сети
    6. отказ одного из компьютеров не приводит к полному сбою сети
    7. высокая скорость обмена данными
    8. бесперебойное электропитание нужно устанавливать только на главном компьютере

    6. Недостатки одноранговых сетей: ...

    1. слабая система контроля и протоколирования работы сети
    2. сетевые операции замедляют работу сети
    3. зависимость компьютеров-клиентов от сервера
    4. высокая стоимость
    5. обязательное централизованное администрирование

    7. Оптимальное максимальное число компьютеров одноранговой сети - ...

    1. не ограничено

    8. Одноранговая сеть вполне подходит там, где: ...

    1. количество пользователей не превышает нескольких человек
    2. потоки данных невелики
    3. в будущем не ожидается значительного расширения сети

    9. Нежелательно реализовывать одноранговую сеть там, где: ...

    1. необходима высокая скорость передачи данных
    2. в будущем ожидается значительное расширение сети
    3. основным является вопрос защиты данных
    4. пользователи расположены на большом расстоянии друг от друга
    5. пользователи расположены компактно
    6. вопросы защиты данных не критичны
    7. потоки данных невелики

    10. Для реализации одноранговой сети необходимо: ...

    1. приобрести дорогостоящий сервер
    2. приобрести достаточно мощные компьютеры
    3. чтобы пользователи были расположены на значительном расстоянии друг от друга
    4. чтобы пользователи были расположены компактно
    5. взять на работу системного администратора

    11. Для объединения двух компьютеров в локальную сеть необходимо: ...

    1. чтобы компьютеры были оснащены сетевой картой
    2. приобрести сервер
    3. чтобы в качестве кабельной системы было выбрано оптоволокно
    4. чтобы компьютеры находились на незначительном расстоянии друг от друга
    5. подключить к компьютерам модем
    6. чтобы оперативная память обоих компьютеров была не менее 250 Мбайт

    12. В архитектуре клиент-сервер клиенты - это: ...

    1. рабочие станции, которые используют ресурсы сервера и предоставляют удобные интерфейсы пользователя
    2. объекты, предоставляющие сервис другим объектам сети по их запросам
    3. сотрудники данной организации, которые используют программное обеспечение с лицензионных дисков
    4. модемы, позволяющие рабочим станциям связываться с другими сетями
    5. системные администраторы
    6. абоненты сети, которые только используют сетевые ресурсы, но сами свои ресурсы в сеть не отдают

    13. Сервер - это...

    1. объект сети, предоставляющий сервис другим объектам сети по их запросам
    2. абонент сети, который предоставляет свои ресурсы другим абонентам, но сам не использует ресурсы других абонентов, т.е. служит только сети
    3. модем, позволяющий рабочим станциям связываться с другими сетями
    4. процесс обслуживания клиентов
    5. центральный процессор

    14. Интерфейсы пользователя - это...

    1. процедуры взаимодействия пользователя с системой или сетью
    2. рабочий стол станции-клиентов
    3. оконечное оборудование данных
    4. соседние компьютеры сети
    5. документация по работе с программным обеспечением

    15. Выделенный сервер - это...

    1. сервер, занимающийся только сетевыми задачами
    2. сетевой принтер
    3. сервер, который помимо обслуживания сети занимается другими задачами
    4. сервер, который обслуживает только администрацию предприятия
    5. сервер, который обслуживает узкий круг пользователей общей сети

    16. Предпочтение клиент-серверной сети нужно отдать, если: ...

    1. количество пользователей больше 10
    2. требуется централизованное управление, безопасность, управление ресурсами или резервное копирование
    3. нужен доступ к глобальной сети
    4. требуется разделять ресурсы на уровне пользователей
    5. нет возможности или необходимости в централизованном администрировании
    6. вопросы защиты данных не критичны

    17. Преимущества клиент-серверной архитектуры: ...

    1. возможность организации сети с большим количеством рабочих станций
    2. обеспечение централизованного управления учетными записями пользователей
    3. эффективный доступ к сетевым ресурсам
    4. пользователю нужен один пароль для входа в сеть и для получения доступа
    5. нет необходимости в системном администрировании
    6. невысокая стоимость

    18. В клиент-серверной архитектуре выделяются группы объектов: ...

    1. клиенты
    2. серверы
    3. данные
    4. сетевые службы
    5. системные администраторы
    6. сетевые принтеры

    19. Недостатки клиент-серверной архитектуры: ...

    1. неисправность главного компьютера может сделать сеть неработоспособной
    2. необходимость квалифицированного персонала для администрирования
    3. высокая стоимость сетей и сетевого оборудования
    4. система разграничения прав не слишком развита
    5. бесперебойное электропитание нужно устанавливать на всех компьютерах, входящих в сеть
    6. невозможность обеспечения конфиденциальности данных

    Ответы:

    1 - а, b, с, d; 2 - a, b; 3 - a, b; 4 - a, b; 5 - а, b, с, d, f; 6 - a, b, c, d; 7 - a; 8 - a, b, с, d, e; 9 - а, b, c, d;10 - b, d; 11 - a, d; 12 - a, f; 13 - a, b; 14 - a; 15 - a; 16 - a, b, c; 17 - a, b, c, d; 18 - a, b, c, d; 19 - a, b, c.

    28.1. Архитектура сети

    Сеть представляет собой совокупность компьютеров, объединенных средствами передачи данных. Средства передачи данных в общем случае могут состоять из следующих элементов: связных компьютеров, каналов связи (спутниковых, телефонных, цифровых, волоконно-оптических, радио- и других), коммутирующей аппаратуры, ретрансляторов, различного рода преобразователей сигналов и других элементов и устройств.

    Архитектура сети ЭВМ определяет принципы построения и функционирования аппаратного и программного обеспечения элементов сети.

    Современные сети можно классифицировать по различным признакам: по удаленности компьютеров, топологии, назначению, перечню предоставляемых услуг, принципам управления (централизованные и децентрализованные), методам коммутации (без коммутации, телефонная коммутация, коммутация цепей, сообщений, пакетов и дейтаграмм и т.д.), видам среды передачи и т.д.

    В зависимости от удаленности компьютеров сети условно разделяют на локальные и глобальные.

    Произвольная глобальная сеть может включать другие глобальные сети, локальные сети, а также отдельно подключаемые к ней компьютеры (удаленные компьютеры) или отдельно подключаемые устройства ввода-вывода. Глобальные сети бывают четырех основных видов: городские, региональные, национальные и транснациональные. В качестве устройств ввода-вывода могут использоваться, например, печатающие и копирующие устройства, кассовые и банковские аппараты, дисплеи (терминалы) и факсы. Перечисленные элементы сети могут быть удалены друг от друга на значительное расстояние.

    В локальных вычислительных сетях (ЛВС) компьютеры расположены па расстоянии до нескольких километров и обычно соединены при помощи скоростных линий связи со скоростью обмена от 1 до 10 и более Мбит/с (не исключается случай соединения компьютеров и с помощью низкоскоростных телефонных линий). ЛВС обычно развертываются в рамках некоторой организации (корпорации, учреждения). Поэтому их иногда называюткорпоративными системами илисетями. Компьютеры при этом, как правило, находятся в пределах одного помещения, здания или соседних зданий.

    Независимо от того, в какой сети работает некоторый компьютер, функции установленного на нем программного обеспечения условно можно разделить на две группы: управление ресурсами самого компьютера (в том числе и в интересах решения задач для других компьютеров) иуправление обменом с другими компьютерами (сетевые функции).

    Собственными ресурсами компьютера традиционно управляет ОС. Функции сетевого управления реализует сетевое ПО, которое может быть выполнено как в виде отдельных пакетов сетевых программ, так и в виде сетевой ОС.

    При разработке сетевого ПО используется иерархический подход, предполагающий определение совокупности сравнительно независимых уровней и интерфейсов между ними. Это позволяет легко модифицировать алгоритмы программ произвольного уровня без существенно изменения других уровней. В общем случае допускается упрощение функций некоторого уровня или даже его полная ликвидация.

    Для упорядочения разработки сетевого ПО и обеспечения возможности взаимодействия любых вычислительных систем Международная Организация по Стандартизации (International Standart Organization - ISO) разработала Эталонную модель взаимодействия открытых систем (Open System Interconnection - OSI).

    Эталонная модель OSI определяет следующие семь функциональных уровней:

      физический (physical layer);

      управления линией (звеном) передачи или канальный (data link);

      сетевой (network layer);

      транспортный (transport layer);

      сеансовый (session layer);

      представительный (presentation layer);

      прикладной, или уровень приложений (application layer).

    Физический уровень обеспечивает интерфейс между ЭВМ сети и средой передачи дискретных сигналов. На физическом уровне через абонентские каналы передаются последовательности битов. Управление физическим каналом сводится к выделению начала и конца кадра, несущего в себе передаваемые данные, а также к формированию и приему сигналов определенной физической природы.

    Стандарты физического уровня включают рекомендации Х.21 либо Х.21 бис, определяющие механические, электрические, функциональные и процедурные характеристики, необходимые для установления (активизации), поддержания и расторжения (деактивизации) физических соединений.

    Функции канального уровня состоят в управлении вводом-выводом информации в канале связи. Для повышения достоверности передачи процедуры канального уровня могут предусматривать введение избыточных кодов, повторную передачу данных и другие методы. Формируемые этим уровнем данные группируются в так называемыекадры

    Обмен данными между двумя объектами канального уровня может вестись одним из трех способов: дуплексным (одновременно в обоих направлениях),полудуплексным (попеременно в обоих направлениях) илисимплексным (в одном направлении).

    Сетевой уровень обеспечивает передачу сетевых блоков (пакетов) между узлами сети. Здесь решаются задачи выбора маршрута из числа возможных (при изменении нагрузки пли конфигурации сети), управления входящим потоком, буферизации пакетов и т.д. Основная функция сетевого протокола - прокладка в каждом физическом канале совокупности логических каналов (до 4096), что существенно повышает эффективность использования ресурсов физического канала.

    Основной функцией транспортного уровня является доставка сообщений (транспортных блоков), которые состоят из сетевых пакетов. С этой целью транспортные объекты сетевого ПО организуют разборку сообщений на передающем конце и сборку сообщений из принимаемых пакетов на приемной стороне. Кроме того, транспортный уровень занимается согласованием различных сетевых уровней с помощью соответствующихшлюзов (согласование сетевых объектов принципиальноразличных сетей)и мостов (согласование сетевых объектоводнотипных сетей).

    Для контроля того, что все отправленные пакеты приняты и в них нет ошибок, применяется метод посылки квитанций - квитирование. Квитанции, подтверждающие прием, могут посылаться получателем после приема одного или нескольких пакетов (обычно до 8). В последнем случае говорят о так называемом механизме "окна". Применение этого механизма при неплохом качестве средств связи позволяет уменьшить загрузку коммуникационной сети передаваемой по ней служебной информацией.

    В настоящее время существует пять классов сервиса, предоставляемого транспортным протоколом (О, 1... 4). Выделенные классы различаются возможностями приоритетной передачи сообщений, защиты от ошибок, а также засекречивания данных с помощью шифрования.

    Сеансовый уровень предназначен для организации сеансов связи (взаимодействия) между объектами более высоких уровней При установлении сеансов связи контролируется полномочие объекта по доступу к другому объекту. Данный уровень, как и транспортный, предусматривает несколько классов услуг (А, В, С и D).

    Представительный уровень описывает методы преобразования информации (шифрование, сжатие, перекодировка), передаваемой объектам прикладного уровня: пользователям и программам.

    Прикладной уровень отвечает за поддержку прикладного ПО пользователя. Па этом уровне реализуются три основные службы: передача и управление файлами, передача и обработка заданий, а также служба виртуального терминала.

    Предложенная семиуровневая модель описывает общие принципы объединения разделенных средой передачи данных компьютеров. Для описания взаимодействия программных и аппаратных элементов уровней используются протоколы и интерфейсы.

    Протоколом называется свод правил взаимодействия объектов одноименного уровня, а также форматы передаваемых между объектами блоков данных (сообщений). Примерами протоколов звена данных являются протокол HDLC (Higher-level Data Link Control), принятый ISO, и протокол SDLC (Synchronous Data Link Control) фирмы IBM.

    Интерфейсы описывают процедуры взаимодействия объектов смежных уровней и форматы информации, передаваемой между этими объектами. Примером одного из интерфейсов является интерфейс Х.25 подключения пользователей к сетям передачи данных общего пользования. Этот интерфейс описан в соответствующих рекомендациях (Х.25), где определяется порядок и правила взаимодействия оконечного оборудованияобработки данных DTE (Data Terminal Equipment) и оконечного оборудования цепейпередачи данных DCE (Data Circuit-terminating Equipment). Роль DTE выполняет модем или цифровое устройство сопряжения для подключения к сети передачи данных. В качестве DCE может выступать хост-машина (Host), контроллер или концентратор, обслуживающий удаленные терминалы, интерфейсный компьютер для подключения к другой сети и т.д.

    Разработка силами ISO множества рекомендаций по организации сетевого обмена между компьютерами внесла существенный вклад в теорию создания как глобальных, так и локальных сетей. Однако следует заметить, что принятие международных стандартов не устранило полностью разнообразия архитектур реальных существующих сетей.

    Отличия сетей друг от друга вызваны особенностями используемого аппаратного и программного обеспечения, различной интерпретацией рекомендаций фирмами-разработчиками, различием требований к системе со стороны решаемых задач (требования защищенности информации, скорости обмена, безошибочности передачи данных и т.д.) и другими причинами. В сетевом ПО локальных сетей часто наблюдается сокращение числа реализуемых уровней.

    Более интенсивный обмен информацией происходит в локальных сетях, нежели в глобальных. В ЛВС, по существу, организовано управление аппаратно-программными ресурсами всех входящих в сеть компьютеров. Реализует эти функции сетевое ПО. В глобальной сети основным видом взаимодействия между независимыми компьютерами является обмен сообщениями.

    В настоящем разделе рассматриваются вопросы организации распределенных вычислений в среде ЛВС. Вопросы построения и функционирования глобальных сетей на примере сети Internet излагаются в следующем разделе.

    Структуризация сети ЭВМ.

    Различают топологию физических связей (физическую структуру сети) и топо­логию логических связей сети (логическую структуру сети).

    Конфигурация физических связей определяется электрическими соединениями компью­теров и может быть представлена в виде графа, узлами которого являются компьютеры и коммуникационное оборудование, а ребра соответствуют отрезкам кабеля, связывающим пары узлов.

    Логические связи представляют собой пути прохождения информационных потоков по сети; они образуются путем соответствующей настройки коммуникационного оборудования.

    Цель физической струк­туризации - обеспечить построение сети не из одного, а из нескольких физиче­ских отрезков кабеля.

    Основными средствами физической структуризации локальных сетей являются повторите­ли (repeater) и концентраторы (concentrator)/ или хабы (hub)/

    Простейшее из коммуникационных устройств - повторитель - используется для физического соединения различных сегментов кабеля локальной сети с целью увеличения общей длины сети.

    Повторитель, который имеет несколько портов и соединяет несколько физиче­ских сегментов, часто называют концентратором, или хабом.

    ВНИМАНИЕ

    Добавление в сеть повторителя всегда изменяет ее физическую топологию, но при этом оставляет без изменения логическую топологию.

    Концентраторы являются необходимыми устройствами практически во всех ба­зовых технологиях локальных сетей - Ethernet, Token Ring, FDDI, Fast Ethernet, Gigabit Ethernet. В работе концентраторов любых тех­нологий много общего - они повторяют сигналы, пришедшие с одного из своих портов, на других своих портах. Разница состоит в том, на каких именно портах повторяются входные сигналы. Так, концентратор Ethernet повторяет входной сигнал на всех своих портах, кроме того, с которого этот сигнал поступил. А концентратор Token Ring повторяет входной сигнал только на одном, соседнем порту.

    Логическая структуризация сети на разделяемой среде

    Физическая структуризация сети не позволяет справиться с дефицитом пропускной способности, невозможностью использова­ния в разных частях сети линий связи разной пропускной способности. В таком случае может помочь логическая структуризация сети.

    Типовые физические топологии сети (шина, кольцо, звезда), которые ограничи­вают все сетевые устройства, предоставляя им для обмена данными только одну разделяемую среду, оказываются неадекватными структуре информационных потоков в большой сети.

    Логическая струк­туризация сети - зто процесс разбиения сети на сегменты с локализованным трафиком.

    Логическая структуризация позволяет дифференцировать дос­тупную пропускную способность в разных частях сети.

    Логическая структуризация сети проводится путем использования мостов, коммутаторов, маршрутизаторов и шлюзов.

    Мост делит единую среду передачи на части, передавая инф. из одного сегмента в др. только в том случае, если такая передача действительно необходима. Тем самым мост изолирует трафик одного сегмента от трафика другого, повышая общую производительность сети. Мосты используют аппаратные адреса компьютеров.

    Коммутатор (switch) функционально подобен мосту и отличается от моста в ос­новном более высокой производительностью. Каждый интерфейс коммутатора оснащен специализированным процессором, который обрабатывает кадры по ал­горитму моста независимо от процессоров других портов. Можно сказать, что коммутаторы - это усовершенствованные мосты, которые обрабатывают кадры в параллельном режиме.

    Маршру­тизаторы(router ) более надежно и более эффективно, чем мосты, изолируют трафик от­дельных частей сети друг от друга. Так, маршрутизаторы могут работать в сети с замкнутыми контурами, при этом они обеспечивают вы­бор наиболее рациональных маршрутов. Другой важной функцией маршрутиза­торов является их способность связывать в единую сеть сети, построенные на базе разных сетевых технологий, например Ethernet и ATM.

    Помимо перечисленных устройств отдельные части сети может соединять шлюз (gateway ). Шлюз позволяет объединять сети, построенные на существенно раз­ных программных и аппаратных платформах. Традиционно в Интернете термины «шлюз» и «маршрутизатор» используются как синоним.

    Программно - аппаратный комплекс сетей ЭВМ. Классификация сетей ЭВМ.

    Весь комплекс аппаратно- программных средств ЭВМ включает:

    1)Аппаратные средства: - компьютеры пользователей (конечное устройство);

    Коммутаторы;

    Маршрутизаторы;

    Коммутаторы, маршрутизаторы и мосты являются промежуточными узлами сети, которые обеспечивают передачу информации по сети.

    2) Коммутационное оборудование.

    3) Операционные системы – программное обеспечение, которое осуществляет управлению сетью ЭВМ.

    4)Сетевые приложения пользователя.

    Вся компьютерная сеть разделена на 2 большие части:

    1)Сети доступа – объединяет компьютеры пользователей и через точку доступа обеспечивает обмен информации с другими сетями.

    2)Магистральная сеть – объединяет сети доступа и обеспечивает передачу больших потоков информации с высокой скоростью.

    Точка доступа (место подключения сети доступа к магистральной сети)

    Промежуточные узлы (узлы, которые обеспечивают коммутацию передаваемых потоков информации)

    Центры управления сервисами (промежуточные узлы, в которых хранится информация (услуги- e-mail, гипертекст, база данных)).

    Основные классификационные признаки:

    1) территориальный признак

    Глобальные

    Региональные

    Локальные

    2) Сети по предоставлению услуг:

    Сети поставщики услуг

    Корпоративные сети.

    Требования к сетям ЭВМ

    Требования:

    1. Производительность

    2. Надежность

    3. Расширяемость

    4. Масштабируемость

    5. Прозрачность

    6. Поддержка разных видов трафиков

    7. Совместимость

    8. По качеству обслуживания

    1)Производительность
    Потенциально высокая производительность - это одно из основных преимуществ распределенных систем, к которым относятся компьютерные сети. Это свойство обеспечивается распределения работ между несколькими компьютерами сети.

    Основные характеристики производительности сети:

    Время реакции;

    Скорость передачи трафика;

    Пропускная способность;

    Задержка передачи и вариация задержки передачи.
    В общем случае время реакции определяется как интервал между возникновением запроса пользователя к какой-либо сетевой службе и получением ответа на него.
    Время реакции сети обычно складывается из нескольких составляющих:

    Время подготовки запросов на клиентском компьютере;
    - время передачи запросов между клиентом и сервером через сегменты сети и промежуточное коммуникационное оборудование;
    - время обработки запросов на сервере;
    - время передачи ответов от сервера клиенту и время обработки получаемых от сервера ответов на клиентском компьютере.
    Скорость передачи трафика может быть мгновенной, максимальной и средней.
    - средняя скорость вычисляется путем деления общего объема переданных данных на время их передачи, причем выбирается длительный промежуток времени - час, день или неделя;
    - мгновенная скорость отличается от средней тем, что для усреднения выбирается очень маленький промежуток времени - например, 10 мс или 1 с;
    - максимальная скорость - это наибольшая скорость, зафиксированная в течение периода наблюдения.
    Пропускная способность - максимально возможная скорость обработки трафика, определенная стандартом технологии, на которой построена сеть. Пропускная способность отражает максимально возможный объем данных, передаваемый сетью в единицу времени.

    Задержка передачи определяется как задержка между моментом поступления данных на вход какого-либо сетевого устройства или части сети и моментом появления их на выходе.
    2)Надежность и безопасность
    Важно различать несколько аспектов надежности. Для сравнительно простых технических устройств используются следующие показатели надежности:
    - среднее время наработки на отказ; - вероятность отказа; - интенсивность отказов.

    Для оценки надежности сложных систем применяется другой набор характеристик: -готовность или коэффициент готовности; -сохранность данных; -согласованность (непротиворечивость) данных; -вероятность доставки данных; -безопасность; - отказоустойчивость.
    3,4) Расширяемость и масштабируемость
    Расширяемость означает возможность сравнительно легкого добавления отдельных элементов сети (пользователей, компьютеров, приложений), наращивания длины сегментов сети и замены существующей аппаратуры более мощной.
    Масштабируемость означает, что сеть позволяет наращивать количество узлов и протяженность связей в очень широких пределах, при этом производительность сети не ухудшается.
    5)Прозрачность
    Прозрачность сети достигается в том случае, когда сеть представляется пользователям не как множество отдельных компьютеров, связанных между собой сложной системой кабелей, а как единая традиционная вычислительная машина с системой разделения времени.
    Прозрачность может достигаться на 2 различных уровнях - на уровне пользователя и на уровне программиста.
    На уровне пользователя прозрачность означает работу с удаленными ресурсами, используя те же команды и процедуры, что и для работы с локальными ресурсами.
    На программном уровне прозрачность заключается в том, что приложению для доступа к удаленным ресурсам требуются те же вызовы, что и для доступа к локальным.
    Прозрачность - свойство сети скрывать от пользователя детали внутреннего устройства, что упрощает работу в сети.


    Похожая информация.


    Тема № 2: Основные понятия и терминология

    К сожалению, для вычислительной техники характерна терминологическая неоднозначность и неопределённость, что проявляется в различном толковании в разных литературных источниках одного и того же термина (например «вычислительная система» или «вычислительный комплекс»), либо в использовании разных терминов для обозначения одного и того же понятия (например «вычислительная сеть», «сеть ЭВМ», «компьютерная сеть»). Всё это зачастую усложняет восприятие и усвоение материала.

    Целью излагаемого в данном разделе материала является устранение терминологической неоднозначности и уточнение используемых ниже терминов и понятий. Предлагаемая классификация различных систем и объектов вычислительной техники направлена на выявление классов систем, характеризующихся одинаковыми или близкими свойствами, что позволяет унифицировать процесс изучения и исследования вычислительных систем и сетей.

    Понятие сети ЭВМ

    Сеть ЭВМ (рис. 1.1) - совокупность средств вычислительной техники (СВТ), представляющих собой множество ЭВМ, объединённых с помощью средств телекоммуникаций (СТК). Сеть ЭВМ реализует две основные функции:

    Обработку данных;

    Передачу данных.

    Наряду с термином «сеть ЭВМ» широко используются близкие по смыслу термины «компьютерная сеть» и «вычислительная сеть», которые обычно рассматриваются как синонимы. Однако некоторые незначительные различия между указанными терминами мы будем иметь в виду при дальнейшем изложении материала.

    Из данного выше определения (рис. 1.1) следует, что «сеть ЭВМ» представляет собой множество ЭВМ (компьютеров), объединённых в единую сеть с помощью средств телекоммуникаций, образующих базовую сеть передачи данных (СПД). Другими словами, «сеть ЭВМ» или «компьютерная сеть» - это объединение ЭВМ (компьютеров), в отличие, например, от телефонной сети, объединяющей автоматические телефонные станции (АТС). Поэтому эти два термина будем рассматривать и использовать ниже как эквивалентные. Термин же «вычислительная сеть» скорее характеризует назначение сети -выполнение вычислений, что отличает её, например, от «информационной сети», предоставляющей информационные услуги, или от «телекоммуникационной сети», предназначенной для передачи данных.

    Отдельные сети ЭВМ могут объединяться между собой, образуя большие компьютерные сети, которые в свою очередь могут объединяться и образовывать сверхбольшие глобальные сети. Такое объединение сетей приводит к иерархической структуре, в которой небольшие сети являются подсетями сетей более высокого ранга.

    Итак, сеть ЭВМ реализует передачу и обработку данных. Однако часто можно услышать или прочитать, что в сети передаётся и обрабатывается информация. Так что же на самом деле передаётся и обрабатывается в сети: данные или информация? Для ответа на этот вопрос необходимо определить понятия «данные» и «информация».

    Существуют различные подходы к определению понятий «данные» и «информация» в разных областях человеческой деятельности: в биологии, в кибернетике, в философии и т.д. Создана даже специальная научная дисциплина «Теория информации».

    Среди всех существующих определений понятий «данные» и «информация» воспользуемся общепринятыми традиционными определениями, для чего обратимся к «Словарю русского языка» С.И.Ожегова, и попытаемся сформулировать разницу между этими двумя терминами.

    Данные и информация

    «Данные - сведения, необходимые для какого-нибудь вывода, решения.

    Информация - сведения, осведомляющие о положении дел, о состоянии чего-нибудь». (Ожегов СИ. Словарь русского языка).

    Из этих определений следует, что данные - это любое множество сведений, а информация - это сведения, полученные с некоторой целью и несущие в себе новые знания для того, кто эту информацию получает.

    Например, телефонная книга содержит данные в виде множества телефонных номеров различных организаций. Извлекая же номер некоторой конкретной организации, в которую мы хотим позвонить, мы получаем информацию в виде телефонного номера (или нескольких телефонных номеров) этой организации. По этой же причине мы говорим «база данных» (а не «база информации»), но, формируя запрос к базе данных, мы получаем информацию в виде сведений, представляющих для нас определённый интерес.

    «Информация» - понятие субъективное. Сведения, которые являются информацией для одного человека, могут не быть информацией для другого. Например, сведения типа «Париж - столица Франции, а Лондон - столица Англии» являются информацией для школьника, который впервые узнал об этом, и не являются информацией (чем-то новым и ранее не известным) для взрослого человека.

    Следует также иметь в виду, что количественной мерой данных является объём - количество единиц данных, измеренных в байтах, словах, страницах, количестве телефонных номеров в телефонной книге и т.п. В то же время, количественной мерой информации является энтропия - мера неопределенности информации. Чем больше энтропия, тем более ценной является информация.

    Таким образом, можно сказать, что в компьютерной сети передаются и данные, и информация.

    Взаимосвязь понятий «данные» и «информация» в рассматриваемом контексте иллюстрируется рис. 1.2, показывающим, что информация извлекается из множества данных в результате некоторых манипуляций (обработки данных).