Где используется кварц 32768 гц. Лечим китайские часы

Казалось-бы, банальное дело, запустить часовой кварц. Какие могут быть проблемы? Есть микроконтроллер и две его ножки, которые специально предназначены для подключения кварца. Есть часовой кварц. Припаять кварц – дело двух секунд. Еще минута нужна для того, чтобы добавить пару строк инициализации таймера в программу. Вот вроде и все. НО, после того как я три дня запускал этот долбанный часовой кварц, я понял, что вопрос не так прост, как я думал.

А предыстория была такой. Друг попросил меня сделать ему простые часики, без наворотов, на 7-сегментных индикаторах. Плевое дело. Микроконтроллер был взят ATmega48 (умеет работать с часовым кварцем), быстренько написана программа, вытравлена печатка. После сборки часов и отладки программы (динамическая индикация, кнопки и т.д.) дошла очередь до часового кварца. До этих часиков я уже пару раз применял часовой кварц в своих проектах и ничего не предвещало беды:), но случилось непредвиденное – часовой кварц наотрез отказался запускаться. Вообще!
В попытках разобраться, что-же мешает заработать моему часовому кварцу я первым делом обратился к даташиту на микроконтроллер (ATmega48). Информации по асинхронному режиму и подключению таймера там оказалось очень мало. Дальше я начал искать решение проблемы на форумах. Вот тут было разнообразие решений и советов вплоть до ритуальных танцев с бубнами, что тоже не особо мне помогло. Пришлось путем проб и ошибок (не путать с «методом тыка»!) самому разбираться, что к чему. В результате героических потугов, наступания на какие только можно грабли и убитых трех дней, родился практический опыт подключения часового кварца, с которым я здесь и поделюсь.

Итак, какие грабли нас ожидают при запуске часового кварца?

1 Схемотехника.
1.1 Конденсаторы.
В даташите на микроконтроллер довольно пространно упоминается то, что к часовому кварцу должны быть подключены конденсаторы, а про их емкость вообще узнать трудно. Часовой кварц, скорей всего, заработает и без конденсаторов, но лучше их поставить это улучшит стабильность частоты и поможет кварцу быстрей запускаться.
Емкость конденсаторов должна быть в пределах 12-22 пФ.

1.2 Разводка дорожек под кварц.
Тут даташит и апноты дают нам четкие указания. Дорожки от ножек микроконтроллера до кварца должны быть минимальной длинны, земляная» дорожка для конденсаторов должна быть отдельной, то есть через нее не должны протекать посторонние токи (особенно это касается сильноточных и высокочастотных цепей).

1.3 Корпус часового кварца.
Железный корпус часового кварца обязательно припаяете к земле (к той к которой припаяны конденсаторы). Незаземленный корпус будет работать как антенна, внося искажения в работу кварца, ухудшая точность хода Ваших часов.

1.4 Грязь на плате.
Часовой кварц довольно нежная штука и сопротивления в пару мегаом между ножками вполне хватит для его остановки. Как показала практика, жидкий флюс, если его плохо смыть, дает достаточное сопротивление, для того чтобы кварц не работал. После пайки тщательно вымойте плату. Очень часто во флюсах содержится кислота, что и дает проводимость между ножками. Для нейтрализации кислоты промойте плату слабым раствором соды (пищевой) и тщательно отмойте чистой водой.

2 Программирование.
2.1 Инициализация асинхронного режима таймера.

Для того чтобы таймер работал от часового кварца, его (таймер) необходимо перевести в асинхронный режим. Для перевода таймера (почти у всех микроконтроллеров это таймер 2) в этот режим нужно записать 1 в бит AS2. Но не все так просто, нужно соблюсти определенный алгоритм запуска. По даташиту процедура включения асинхронного режима для таймера 2 следующая:
1. Запретить прерывания от таймера/счетчика 2 — OCIE2x, TOIE2;
2. Переключить его в асинхронный режим 1 -> AS2;
3. Записать новые значения в регистры TCNT2, OCR2x и TCCR2x;
4. Дождаться сброса флагов TCN2UB, OCR2xUB и TCR2xUB;
5. Сбросить флаги прерываний таймера/счетчика 2;
6. Разрешить прерывания (если требуется).

Обязательно соблюдайте такую последовательность. Вот листинг правильной инициализации асинхронного режима таймера2.

/* запрещаем прерывания */ cli() ; /* 1. Запрещаем прерывания Timer/Counter2 обнуляя OCIE2х и TOIE2. */ TIMSK2 &= ~((1 << OCIE2A) | (1 << OCIE2B) | (1 << TOIE2) ) ; /* 2. Переводим Timer/Counter2 в асинхронный режим устанавливая AS2. */ ASSR = (1 << AS2) ; /* Даем немного времени для стабилизации работы генератора (можно опустить). */ _delay_ms(1000 ) ; /* 3. Записываем новые значения TCNT2, OCR2x, and TCCR2B. */ TCNT2 = 0 ; /* устанавливаем пределитель = 128 32.768 kHz / 128 / 256 = переполнение раз за секунду. */ TCCR2B |= (1 << CS22) | (1 << CS20) ; /* 4. Чтобы быть уверенным, что часы заработали ждем пока обнулятся биты: TCN2UB, OCR2AUB, OCR2BUB, TCR2AUB и TCR2BUB. */ while (ASSR & 0x1F ) ; /* 5. Обнуляем флаги прерываний Timer/Counter2. */ TIFR2 |= ((1 << OCF2A) | (1 << OCF2B) | (1 << TOV2) ) ; /* 6. Разрешаем прерывание по переполнению таймера 2 */ TIMSK2 |= (1 << TOIE2) ; /* разрешаем прерывания */ sei() ;

/* запрещаем прерывания */ cli(); /* 1. Запрещаем прерывания Timer/Counter2 обнуляя OCIE2х и TOIE2. */ TIMSK2 &= ~((1<

2.2 Пределитель таймера 2.
Для того, чтобы прерывания по переполнению таймера2 происходили раз в секунду, значение пределителя должно быть 128. (128пределитель*256переполнение=32768частота кварца).

2.3 Работа часов в режиме сна PowerSave.
Очень заманчиво в паузах между секундными прерываниями переводить микроконтроллер в режим сна, в этом случае ток микроконтроллера упадет до 6-7мкА. Для такого случая есть режим пониженного потребления PowerSave, в нем таймер2 продолжает работать от часового кварца и пробуждает микроконтроллер прерыванием. Алгоритм такого режима работы простой, после выхода из режима сна по прерыванию от таймера в процедуре обработки прерывания «тикаем» часами, выходим из прерывания и опять даем команду заснуть (SLEEP). Вот тут есть очень важный нюанс. Опять смотрим даташит на микроконтроллер в разделе режимов пониженного потребления и работы асинхронного режима. Для того чтобы таймер после пробуждения начал нормально функционировать и был способен вывести микроконтроллер из сна при следующем прерывании нужно до команды засыпания выждать определенное время. Для того, чтобы убедится в том что генератор работает нормально нужно сделать запись в любой регистр таймера, из тех, которые не нарушат работу часов (например в OCR2x) и дождаться сброса флагов готовности данного регистра (OCR2xUB). После того как флаг сбросился можно смело переводить микроконтроллер в режим сна.

/* Точка выхода с прерывания по переполнению таймера2 */ /* Записываем любое значения в OCR2A. */ OCR2A = 0; /* Дожидаемся пока обнулится OCR2AUB. */ while(ASSR & (1<

3 Разное.
3.1 Не используйте дешевые китайские кварцы (в особенности выпаянные со старых сломанных копеечных часов). Даже если они и заработают, точность у них будет никакая.

3.2 Ну и напоследок , имейте под рукой несколько разных кварцев, возможно, Ваш кварц не запускается по причине того, что он спален. Попробуйте его заменить.

Вот, вроде, и все грабли, по которым я потоптался, пока запускал часовой кварц. Или еще что-то добавить?


(Visited 9 508 times, 1 visits today)

Что такое генератор? Генератор – это по сути устройство, которое преобразует один вид энергии в другой. В электронике очень часто можно услышать словосочетание “генератор электрической энергии, генератор частоты , ” и тд.

Кварцевый генератор представляет из себя генератор частоты и имеет в своем составе . В основном кварцевые генераторы бывают двух видов:

те, которые могут выдавать синусоидальный сигнал

и те, которые выдают прямоугольный сигнал


Чаще всего в электронике используется прямоугольный сигнал

Схема Пирса

Для того, чтобы возбудить кварц на частоте резонанса, нам надо собрать схему. Самая простая схема для возбуждения кварца – это классический генератор Пирса , который состоит всего лишь из одного полевого транзистора и небольшой обвязки из четырех радиоэлементов:


Пару слов о том как работает схема. В схеме есть положительная обратная связь и в ней начинают возникать автоколебания. Но что такое положительная обратная связь?

В школе всем вам ставили прививки на реакцию Манту, чтобы определить, если у вас тубик или нет. Через некоторое время приходили медсестры и линейкой замеряли вашу реакцию кожи на эту прививку


Когда ставили эту прививку, нельзя было чесать место укола. Но мне, тогда еще салаге, было по барабану. Как только я начинал тихонько чесать место укола, мне хотелось чесать еще больше)) И вот скорость руки, которая чесала прививку, у меня замерла на каком-то пике, потому что совершать колебания рукой у меня максимум получалось с частотой Герц в 15. Прививка набухала на пол руки)) И даже один раз меня водили сдавать кровь в подозрении на туберкулез, но как оказалось, не нашли. Оно и неудивительно;-).

Так что это я вам тут рассказываю хохмы из жизни? Дело в том, что эта чесотка прививки самая что ни на есть положительная обратная связь. То есть пока я ее не трогал, чесать не хотелось. Но как только тихонько почесал, стало чесаться больше и я стал чесать больше, и чесаться стало еще больше и тд. Если бы на мою руку не было физический ограничений, то наверняка, место прививки уже бы стерлось до мяса. Но я мог махать рукой только с какой-то максимальной частотой. Так вот, такой же принцип и у кварцевого генератора;-). Чуть подал импульс, и он начинает разгоняться и уже останавливается только на частоте параллельного резонанса;-). Скажем так, “физическое ограничение”.

Первым делом нам надо подобрать катушку индуктивности . Я взял тороидальный сердечник и намотал из провода МГТФ несколько витков


Весь процесс контролировал с помощью LC-метра , добиваясь номинала, как на схеме – 2,5 мГн. Если не доставало, прибавлял витки, если перебарщивал номинал, то убавлял. В результате добился вот такой индуктивности:


Его правильное название: .

Распиновка слева-направо: Сток – Исток – Затвор


Небольшое лирическое отступление.

Итак, кварцевый генератор мы собрали, напряжение подали, осталось только снять сигнал с выхода нашего самопального генератора. За дело берется цифровой осциллограф


Первым делом я взял кварц на самую большую частоту, которая у меня есть: 32 768 Мегагерц. Не путайте его с часовым кварцем (о нем пойдет речь ниже).


Внизу в левом углу осциллограф нам показывает частоту:


Как вы видите 32,77 Мегагерц. Главное, что наш кварц живой и схемка работает!

Давайте возьмем кварц с частотой 27 Мегагерц:


Показания у меня прыгали. Заскринил, что успел:


Частоту тоже более-менее показал верно.

Ну и аналогично проверяем все остальные кварцы, которые у меня есть.

Вот осциллограмма кварца на 16 Мегагерц:


Осциллограф показал частоту ровнехонько 16 Мегагерц.

Здесь поставил кварц на 6 Мегагерц:


Ровно 6 Мегагерц

На 4 Мегагерца:


Все ОК.

Ну и возьмем еще советский на 1 Мегагерц. Вот так он выглядит:


Сверху написано 1000 Килогерц = 1МегаГерц;-)


Смотрим осциллограмму:


Рабочий!

При большом желании можно даже замерять частоту китайским генератором-частотомером :


400 Герц погрешность для старенького советского кварца не очень и много. Но лучше, конечно, воспользоваться нормальным профессиональным частотомером;-)

Часовой кварц

С часовым кварцем кварцевый генератор по схеме Пирса отказался работать.


“Что еще за часовой кварц?” – спросите вы. Часовой кварц – это кварц с частотой в 32 768 Герц. Почему на нем такая странная частота? Дело все в том, что 32 768 это и есть 2 15 . Такой кварц работает в паре с 15-разрядной микросхемой-счетчиком. Это наша микросхема К176ИЕ5.

Принцип работы этой микросхемы такой: п осле того, как она сосчитает 32 768 импульсов, на одной из ножек она выдает импульс. Этот импульс на ножке с кварцевым резонатором на 32 768 Герц появляется ровно один раз в секунду . А как вы помните, колебание один раз в секунду – это и есть 1 Герц. То есть на этой ножке импульс будет выдаваться с частотой в 1 Герц. А раз это так, то почему бы не использовать это в часах? Отсюда и пошло название – .

В настоящее время в наручных часах и других мобильных гаджетах этот счетчик и кварцевый резонатор встроены в одну микросхему и обеспечивают не только счет секунд, но и целый ряд других функций, типа будильника, календаря и тд. Такие микросхемы называется RTC (R eal T ime C lock) или в переводе с буржуйского Часы Реального Времени.

Схема Пирса для прямоугольного сигнала

Итак, вернемся к схеме Пирса. Предыдущая схема Пирса генерирует синусоидальный сигнал

Но также есть видоизмененная схема Пирса для прямоугольного сигнала

А вот и она:

Номиналы некоторых радиоэлементов можно менять в достаточно широком диапазоне. Например, конденсаторы С1 и С2 могут быть в диапазоне от 10 и до 100 пФ. Тут правило такое: чем меньше частота кварца, тем меньше должна быть емкость конденсатора. Для часовых кварцев конденсаторы можно поставить номиналом в 15-18 пФ. Если кварц с частотой от 1 до 10 Мегагерц, то можно поставить 22-56 пФ. Если не хотите заморачиваться, то просто поставьте конденсаторы емкостью в 22 пФ. Точно не прогадаете.

Также небольшая фишка на заметку: меняя значение конденсатора С1 можно настраивать частоту резонанса в очень тонких пределах.

Резистор R1 можно менять от 1 и до 20 МОм, а R2 от нуля и до 100 кОм. Тут тоже есть правило: чем меньше частота кварца, тем больше значение этих резисторов и наоборот.

Максимальная частота кварца, которую можно вставить в схему, зависит от быстродействия инвертора КМОП. Я взял микросхему 74HC04. Она не слишком быстродействующая. Состоит из шести инверторов, но использовать мы будем только один инвертор:


Вот ее распиновка:

Подключив к этой схеме часовой кварц, осциллограф выдал вот такую осциллограмму:


Кстати, вам эта часть схемы ничего не напоминает?

Не эта ли часть схемы используется для тактирования микроконтроллеров AVR ?

Она самая! Просто недостающие элементы схемы уже есть в самом МК;-)

Плюсы кварцевых генераторов

Плюсы кварцевых генераторов частоты – это высокая частотная стабильность. В основном это 10 -5 – 10 -6 от номинала или, как часто говорят, ppm (от англ. parts per million) - частей на миллион, то есть одна миллионная или числом 10 -6 . Отклонение частоты в ту или иную сторону в кварцевом генераторе в основном связано с изменением температуры окружающей среды, а также со старением кварца. При старении кварца, частота кварцевого генератора стает чуточку меньше с каждым годом примерно на 1,8х10 -7 от номинала. Если, скажем, я взял кварц с частотой в 10 Мегагерц (10 000 000 Герц) и поставил его в схему, то за год его частота уйдет примерно на 2 Герца в минус;-) Думаю, вполне терпимо.

В настоящее время кварцевые генераторы выпускают в виде законченных модулей. Некоторые фирмы, производящие такие генераторы, достигают частотной стабильности до 10 -11 от номинала! Выглядят готовые модули примерно так:


или так

Такие модули кварцевых генераторов в основном имеют 4 вывода. Вот распиновка квадратного кварцевого генератора:

Давайте проверим один из них. На нем написано 1 МГц


Вот его вид сзади:


Вот его распиновка:

Подавая постоянное напряжение от 3,3 и до 5 Вольт плюсом на 8, а минусом на 4, с выхода 5 я получил чистый ровный красивый меандр с частотой, написанной на кварцевом генераторе, то бишь 1 Мегагерц, с очень небольшими выбросами.


Ну прям загляденье!

Да и китайский генератор-частотомер показал точную частоту:


Отсюда делаем вывод: лучше купить готовый кварцевый генератор, чем самому убивать кучу времени и нервов на наладку схемы Пирса. Схема Пирса будет пригодна для проверки резонаторов и для ваших различных самоделок.

Часовой кварц – это термин, используемый для обозначения специальной батарейки для кварцевых часов. С технической точки часовой кварц представляет собой кварцевый генератор для передачи энергии, что необходимо для поворота стрелок часов. При нажатии на часовой кварц, появляется электрический импульс, при подаче на него тока происходит сжатие. Именно благодаря техническим характеристикам применяемых часовых кварцев, часы на основе кварцевых генераторов славятся поразительной точностью показаний.

Особенности выбора и эксплуатации часовых кварцев

В нашем интернет магазине вы можете приобрести качественные современные вариантычасовых кварцевоптом и в розницуот лучших мировых и отечественных производителей по выгодным ценам. Для жителей Москвы предоставляются льготные условия доставки. При использовании в часовом механизме качественного кварцевого генератора, часы практически не требуют дополнительной зарядки. Их достаточно заводить 1 раз в несколько лет. Главным параметром выбора часового кварца является егосфера применения, соответствие часовому механизму. Часовые кварцы новых поколений максимально адаптированы к самым разным модификациям кварцевых часов.

В этой статье поговорим об устройстве кварцевых часов и кварцевом резонаторе. Возможно, это будет довольно сложная тема для понимания. Прошу заметить, что в статье рассматривается принцип работы кварцевых часов не на примере существующего механизма а на примитивной абстрактной и грубой модели, показывающей только суть работы большинсва электронных и кварцевых часов.
В этой статье хочется развеять неточности касательно устройства схемы кварцевых часов, которые я встречал на других ресурсах, но об этом чуть ниже.

Рассмотрим для примера самый простейший кварцевый механизм, он состоит из:

  1. Электронный блок с контроллером и кварцевым резонатором
  2. Элемент питания (на фото отсутствует)
  3. Шаговый электродвигатель (катушка статор и ротор с постоянным магнитом)
  4. Шестереночный привод стрелок

Тут кажется все просто, электронный блок подает электрический импульс на катушки статора и ротор делает оборот равный одной секунде. Но как же электронный блок «понимает», что прошло время крутить ротор.

Рассмотрим подробнее работу схему простейшего электронного блока кварцевых часов, он состоит из кварцевого резонатора (зеленый прямоугольник) и микроконтроллера (красный квадрат).

Теперь остановимся подробнее на принципе работы и устройстве кварцевого резонатора.

На фото вскрытый кварцевый резонатор, К сожалению у меня не получилось вскрыть, не повредив кварц, который чаще всего используется в наручных часах.

Работа кварцевого резонатора основана на пьезоэлектрическом эффекте.

Суть пьезоэлектрического эффекта — это генерация ЭДС пьезоэлектриком при сдавливание или растяжения (вибрации) твердого тела (пьезоэлектрика) и наоборот при подаче напряжения пьезоэлектрик будет сдавливаться или расширяться. Важно заметить, такой эффект происходит только в момент сжатия или растяжения.

Любой кварцевый резонатор состоит из монокристалла кварца вырезанным определенным образом и с закрепленными на нем металическими пластинами к которым подведены контакты. Конкретно в часах используются резонаторы с плоским кристаллом в форме камертона (в виде буквы «Y» или «U») с прикрепленными на плоскостях металическими пластинами к которым подключены выводы. Сам кварц диэлектрик — то есть электрический ток он не проводит.

А теперь переходим к сути работы этого компонента. Бытует мнение, что кварцевый резонатор сам генерирует постоянную частоту, при подаче постоянного тока. Это не так, на самом деле все несколько сложнее.

Как говорилось выше, пьезоэлектрический эффект возникает только в момент сжатия или растяжения пьезоэлектрика. К примеру если кратковременно подать электрический заряд на выводы на кварцевого резонатора то кристалл кварца сожмется (ЭДС). Но в тот момент, как кварц будет обратно разжиматься он создаст противоположный по полярности (противоЭДС) заряд на выводах, конечно гораздо меньший чем был подан изначально. Т.Е произойдет одно колебание. Колебаний может быть несколько, важно то, что именно в этом случае (если нет подпитки электрозаряда из вне) они будут гармонически затухающими. Все это происходит за очень короткий момент времени. Это примерно тоже самое, что и удар по камертону. Кристал кварца может колебаться только с одной частотой, независимо от амплитуды.

Резонанс

Что бы колебания кварца были постоянные а не затухающие, нужно обеспечить постоянную внешнюю подпитку этих колебаний, например электрическим током определенной частоты.

А теперь переходим к тому, почему резонатор называется резонатором. У самого кристалла кварца есть своя частота механических колебаний. Как я уже приводил пример выше с камертоном. У него тоже есть своя механическая частота, то есть неважно, как его ударили, он будет выдавать звучание на одной и той же ноте (частоте). С кварцем все то же самое. Если подать на выводы электрический ток какой либо частоты (в разумных пределах) кварц будет механически колебаться (в этот раз уже постоянно в отличии от кратковременного заряда) только с определенной своей (резонансной) частотой, генерируя ЭДС и противоЭДС. Но если на выводы кварца подать ток именно той частоты на которой резонирует кварц, то потребление электричества которое превращается в работу (в колебания кварца) будет минимально в отличие от других частот. Грубо говоря кварц пропустит через себя все частоты кроме своей резонансной, при которой резко увеличится сопротивление. Все это нам напоминает работу колебательного контура, но кварц отличается гораздо лучшей добротностью.

Микроконтроллер

Одна из задач микроконтроллера поддержания частоты на выводах кварца при которой он резонирует опираясь на сопротивление при определенной частоте.

Т.Е Микроконтроллер синхронизируется с кварцем а так как частота кварца известна то и известно сколько прошло времени за определенное количество колебаний кварца. Чаще всего частота кварца используемого в часах равна 32 768 гц. При такой частоте можно обеспечить хорошие показатели в точности измерение времени.